分析 (1)由已知條件利用正弦定理得到$\frac{sinC}{sinA}=\sqrt{5}$,由cosC的值能求出sinC,由此能求出sinA.
(2)由已知條件利用余弦定理得tanA=$\frac{\sqrt{2}bc}{^{2}+{c}^{2}-{a}^{2}}$=$\frac{2bc}{\sqrt{2}(^{2}+{c}^{2}-{a}^{2})}$=$\frac{\sqrt{2}}{2}$×$\frac{1}{cosA}$,由此能求出sinA.
解答 解:(1)∵在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,$\frac{c}{a}$=$\sqrt{5}$,且cosC=$\frac{2\sqrt{5}}{5}$,
∴$\left\{\begin{array}{l}{\frac{sinC}{sinA}=\sqrt{5}}\\{sinC=\sqrt{1-(\frac{2\sqrt{5}}{5})^{2}}}\end{array}\right.$,
解得sinA=$\frac{1}{5}$.
(2)∵(b2+c2-a2)tanA=$\sqrt{2}$bc,
∴tanA=$\frac{\sqrt{2}bc}{^{2}+{c}^{2}-{a}^{2}}$=$\frac{2bc}{\sqrt{2}(^{2}+{c}^{2}-{a}^{2})}$=$\frac{\sqrt{2}}{2}$×$\frac{1}{cosA}$,
∴$\frac{sinA}{cosA}=\frac{\sqrt{2}}{2}×\frac{1}{cosA}$,
∴sinA=$\frac{\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題考查三角形內(nèi)角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意正弦定理和余弦定理的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $4\sqrt{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | {(0,-1),(1,0)} | C. | [-1,+∞) | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8個(gè) | B. | 9個(gè) | C. | 5個(gè) | D. | 6個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com