6.已知A={0,1},B={-1,0,1},則從B到A的不同映射的有( 。
A.8個(gè)B.9個(gè)C.5個(gè)D.6個(gè)

分析 由映射的定義和分步計(jì)數(shù)原理可得答案.

解答 解:由映射的定義只需給A中的元素0和1在集合B中找到象即可,
∵0在集合B中的象有3種可能,1在集合B中的象頁(yè)有3種可能,
由分步計(jì)數(shù)原理可得總的映射有3×3=9(個(gè))
故選:B

點(diǎn)評(píng) 本題考查映射的定義,涉及分步計(jì)數(shù)原理的應(yīng)用,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知三棱錐O-ABC的頂點(diǎn)A,B,C都在半徑為2的球面上,O是球心,∠AOB=120°,當(dāng)△AOC與△BOC的面積之和最大時(shí),三棱錐O-ABC的體積為(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.
(1)若$\frac{c}{a}$=$\sqrt{5}$,且cosC=$\frac{2\sqrt{5}}{5}$,求sinA的值.
(2)若(b2+c2-a2)tanA=$\sqrt{2}$bc,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.對(duì)任意的實(shí)數(shù)x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的圖象關(guān)于x=1對(duì)稱,且f(0)=2,則f(2015)+f(2016)=(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.經(jīng)過(guò)兩點(diǎn)M(-2,m),N(1,4)的直線MN的傾斜角等于45°,則m=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{2}{3}$,F(xiàn)1、F2分別為其左、右焦點(diǎn),點(diǎn)M為橢圓C的上的頂點(diǎn),且,△MF1F2的面積為2$\sqrt{5}$.
(1)求橢圓C的方程;
(2)如圖,過(guò)圓x2+y2=b2上一點(diǎn)P(點(diǎn)P在y軸右側(cè)),作該圓的切線l,交橢圓C于A,B兩點(diǎn),求△AF2B的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求與兩直線x-2y+1=0和2x-4y-5=0等距離的點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)已知一次函數(shù)f(x)滿足f(0)=5,且函數(shù)圖象過(guò)點(diǎn)(-2,1),求f(x);
(2)已知f(x)是二次函數(shù),且f(0)=0,f(x+1)=f(x)+x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知圓C:(x+1)2+y2=25,定點(diǎn)A(1,0),M為圓上的一個(gè)動(dòng)點(diǎn),連接MA,作MA的垂直平分線交半徑MC于P,當(dāng)M點(diǎn)在圓周上運(yùn)動(dòng)時(shí),點(diǎn)P的軌跡方程為$\frac{{x}^{2}}{\frac{25}{4}}+\frac{{y}^{2}}{\frac{21}{4}}=1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案