分析 (1)由已知可求α+β的范圍,由同角三角函數(shù)關系式即可求cos(α+β)的值;
(2)由已知可求α-β的范圍,由同角三角函數(shù)關系式即可求sin(α-β)的值;
(3)由cos2α=[(α+β)+(α-β)]利用兩角和與差的余弦函數(shù)公式即可求值.
解答 解:(1)∵α∈($\frac{π}{2}$,$\frac{3π}{4}$),β∈($\frac{π}{2}$,$\frac{3π}{4}$),
∴α+β∈(π,$\frac{3π}{2}$),
∴cos(α+β)=-$\sqrt{1-si{n}^{2}(α+β)}$=-$\frac{4}{5}$;
(2)∵α∈($\frac{π}{2}$,$\frac{3π}{4}$),β∈($\frac{π}{2}$,$\frac{3π}{4}$),且α>β,
∴α-β∈(0,$\frac{π}{4}$)
∴sin(α-β)=$\sqrt{1-co{s}^{2}(α-β)}$=$\frac{5}{13}$;
(3)cos2α=[(α+β)+(α-β)]=cos(α+β)cos(α-β)-sin(α+β)sin(α-β)=(-$\frac{4}{5}$)×$\frac{12}{13}$-(-$\frac{3}{5}$)×$\frac{5}{13}$=-$\frac{33}{65}$.
點評 本題主要考查了兩角和與差的余弦函數(shù)公式,同角三角函數(shù)關系式的應用,屬于基本知識的考查.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 甲在打印材料 | B. | 乙在批改作業(yè) | C. | 丙在寫教案 | D. | 丁在打印材料 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com