分析 (1)由已知可求α+β的范圍,由同角三角函數(shù)關(guān)系式即可求cos(α+β)的值;
(2)由已知可求α-β的范圍,由同角三角函數(shù)關(guān)系式即可求sin(α-β)的值;
(3)由cos2α=[(α+β)+(α-β)]利用兩角和與差的余弦函數(shù)公式即可求值.
解答 解:(1)∵α∈($\frac{π}{2}$,$\frac{3π}{4}$),β∈($\frac{π}{2}$,$\frac{3π}{4}$),
∴α+β∈(π,$\frac{3π}{2}$),
∴cos(α+β)=-$\sqrt{1-si{n}^{2}(α+β)}$=-$\frac{4}{5}$;
(2)∵α∈($\frac{π}{2}$,$\frac{3π}{4}$),β∈($\frac{π}{2}$,$\frac{3π}{4}$),且α>β,
∴α-β∈(0,$\frac{π}{4}$)
∴sin(α-β)=$\sqrt{1-co{s}^{2}(α-β)}$=$\frac{5}{13}$;
(3)cos2α=[(α+β)+(α-β)]=cos(α+β)cos(α-β)-sin(α+β)sin(α-β)=(-$\frac{4}{5}$)×$\frac{12}{13}$-(-$\frac{3}{5}$)×$\frac{5}{13}$=-$\frac{33}{65}$.
點(diǎn)評(píng) 本題主要考查了兩角和與差的余弦函數(shù)公式,同角三角函數(shù)關(guān)系式的應(yīng)用,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 甲在打印材料 | B. | 乙在批改作業(yè) | C. | 丙在寫(xiě)教案 | D. | 丁在打印材料 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com