設a、b為實數(shù),若復數(shù)
1+2i
a+bi
=1+i,則a=
 
,b=
 
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:變形可得1+2i=(1+i)(a+bi),整理再由復數(shù)相等可得a,b的方程組,解方程組可得.
解答: 解:∵
1+2i
a+bi
=1+i,∴1+2i=(1+i)(a+bi),
∴1+2i=a-b+(a+b)i
a-b=1
a+b=2
,解得
a=
3
2
b=
1
2
,
故答案為:
3
2
,
1
2
點評:本題考查復數(shù)的代數(shù)形式的乘除運算,涉及復數(shù)相等,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于正整數(shù)n,求證:1+
1
2
+
1
3
+…+
1
n
>2(
n
-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某車間共有12名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(1)若日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人,根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(2)從這6名工人中任取2人,設這兩人加工零件的個數(shù)分別為x、y,求|x-y|≤2的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,P,Q分別為AE,AB的中點.

(Ⅰ)證明:PQ∥平面ACD;
(Ⅱ)證明:平面ADE⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定長為3的線段AB的兩個端點A、B分別在x軸、y軸上滑動,動點P滿足
BP
=2
PA

(Ⅰ)求點P的軌跡曲線C的方程;
(Ⅱ)若過點(1,0)的直線與曲線C交于M、N兩點,求
OM
ON
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(3,2),
a
+
b
=(0,2),則|
b
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=-ex在點A處的切線與直線x-y+3=0垂直,則點A的坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題:
a
,
b
,
c
為平面向量
(1)若
a
b
=
a
c
,則
b
=
c

(2)若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3.
(3)非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
(4)已知函數(shù)f(x)=Acos(ωx+φ)的圖象如圖所示,f(
π
2
)=-
2
3
,則f(0)=
2
3

其中真命題的序號為
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀框圖填空:若a=0.80.3,b=0.90.3,c=log50.9,則輸出的數(shù)是
 

查看答案和解析>>

同步練習冊答案