分析 通項(xiàng)公式an=1+2+3+…+n=$\frac{n(n+1)}{2}$=$\frac{1}{2}{n}^{2}+\frac{1}{2}n$,利用12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$,即可得出.
解答 解:通項(xiàng)公式an=1+2+3+…+n=$\frac{n(n+1)}{2}$=$\frac{1}{2}{n}^{2}+\frac{1}{2}n$,
∵12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$,
∴數(shù)列1,1+2,1+2+3,…,1+2+3+…+n,…的前n項(xiàng)和Sn=$\frac{1}{2}$(12+22+…+n2)+$\frac{1}{2}×\frac{n(n+1)}{2}$=$\frac{1}{2}×$$\frac{n(n+1)(2n+1)}{6}$+$\frac{n(n+1)}{4}$=$\frac{{n}^{3}+3{n}^{2}+2n}{6}$,
故答案為:$\frac{{n}^{3}+3{n}^{2}+2n}{6}$.
點(diǎn)評(píng) 本題考查了結(jié)論12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$、等差數(shù)列的前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com