8.已知邊長為6的正方形ABCD所在平面外一點P,且PD⊥平面ABCD,PD=8
(Ⅰ)連接PB、AC,證明:PB⊥AC;
(Ⅱ)連接PA,求PA與平面PBD所成的角的正弦值.

分析 (Ⅰ)欲證PB⊥AC,只需證明AC垂直PB所在平面即可,因為PB在平面PBD中,AC垂直平面PBD中的兩條相交直線PD和BD,所以問題得證.
(Ⅱ)欲求PA與平面PBD所成的角的大小,只需找到PA在平面PBD中的射影,PA與它的射影所成角即為所求,再放入三角形中,解三角形即可.

解答 (Ⅰ)證明:連接BD,在正方形ABCD中,AC⊥BD,
又PD⊥平面ABCD,所以,PD⊥AC,
所以AC⊥平面PBD,故PB⊥AC.
(Ⅱ)解:因為AC⊥平面PBD,設(shè)AC與BD交于O,連接PO,則∠APO就是PA與平面PBD所成的角,
在△APO中,AO=3$\sqrt{2}$,AP=10,
所以sin∠APO=$\frac{3\sqrt{2}}{10}$,
所以∠APO=arcsin$\frac{3\sqrt{2}}{10}$,
所以PA與平面PBD所成的角的大小為arcsin$\frac{3\sqrt{2}}{10}$.

點評 本題主要考查了直線與直線垂直的證明,直線與平面所成角的計算,以及點到平面的距離的求法,屬于立體幾何的常規(guī)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將分別寫有A,B,C,D,E,F(xiàn)的6張卡片裝入3個不同的信封里中.若每個信封裝2張,其中寫有A,B的卡片裝入同一信封,則不同的方法共有( 。
A.12種B.18種C.36種D.54種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=loga(x-1)+a(a>0,a≠1)的圖象經(jīng)過點(2,3).求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{asin2x,0≤x≤π}\end{array}\right.$.若方程f(x)=1有3個不同的實數(shù)根,則實數(shù)a的取值范圍是(  )
A.(1,+∞)B.{-1}∪(1,+∞)C.(-∞,-1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知直線l∥平面α,l的一個方向向量為(t,2,4),α的法向量為($\frac{1}{2}$,1,2),則實數(shù)t的值為-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=-x3+2x2-x(x∈R).
(1)求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.觀察下列各式:

照此規(guī)律,當n∈N*時,C2n-10+C2n-11+C2n-12+…+C2n-1n-1=( 。
A.4n+1B.4nC.4n-1D.4n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知${(\sqrt{x}+\frac{2}{x^2})^n}$的展開式中,
(1)若第5項的系數(shù)與第3項的系數(shù)之比是56﹕3,求展開式中的常數(shù)項;
(2)求證:二項式${(\sqrt{x}+\frac{2}{x^2})^n}$與${(\sqrt{x}+\frac{2}{x^2})^{n+1}}$的展開式中不可能都有常數(shù)項.

查看答案和解析>>

同步練習(xí)冊答案