16.已知f(x)是定義在[-4,+∞)上的增函數(shù),對?x∈R,總有f(cosx-b2)≥f(sin2x-b-3)恒成立,求實(shí)數(shù)b的取值范圍[$\frac{1}{2}$-$\sqrt{2}$,$\frac{1}{2}$+$\sqrt{2}$].

分析 由題意可得 cosx-b2≥sin2x-b-3≥-4 恒成立,即sin2x≥b-1 ①,且cosx-sin2x≥b2-b-3 ②.分別求得①②的解集,再取交集,即得所求.

解答 解:由題意可得 cosx-b2≥sin2x-b-3≥-4 恒成立,∴sin2x≥b-1 ①,且cosx-sin2x≥b2-b-3 ②.
解①求得b≤sin2x+1≤2.
解②可得${(cosx+\frac{1}{2})}^{2}$-$\frac{5}{4}$≥${(b-\frac{1}{2})}^{2}$-$\frac{13}{4}$,即 ${(b-\frac{1}{2})}^{2}$≤${(cosx+\frac{1}{2})}^{2}$+2≤2,
∴-$\sqrt{2}$≤b-$\frac{1}{2}$≤$\sqrt{2}$,即 $\frac{1}{2}$-$\sqrt{2}$≤b≤$\frac{1}{2}$+$\sqrt{2}$.
再把①②的解集取交集,可得x∈[$\frac{1}{2}$-$\sqrt{2}$,$\frac{1}{2}$+$\sqrt{2}$].

點(diǎn)評 本題主要考查函數(shù)的單調(diào)性的性質(zhì),函數(shù)的恒成立問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知命題p:y=sin(2x+$\frac{π}{3}$)的圖象關(guān)于(-$\frac{π}{6}$,0)對稱;命題q:若2a<2b,則lga<lgb.則下列命題中正確的是( 。
A.p∧qB.?p∧qC.p∧?qD.?p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知數(shù)列{an}的前n項(xiàng)和Sn=2n(n∈N*),則n≥2時,a12+a22+…+an2=( 。
A.$\frac{1}{3}({4^n}-1)$B.$\frac{1}{3}({4^n}+8)$C.$\frac{1}{3}{({2^n}-1)^2}$D.$\frac{1}{3}{({2^n}+4)^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)集合A={-1≤x≤2},B={x|0≤x≤4,x∈Z},則A∩B={0,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)n為整數(shù),如果點(diǎn)(5,n)在兩平行線6x-8y+1=0和3x-4y+5=0之間,則m=4或5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.一批產(chǎn)品共100件,其中有3件不合格品,從中隨機(jī)抽取n(n∈N*)件,用x表示所抽取的n件產(chǎn)品中不合格品的個數(shù).
(1)若n=2,求x的概率分布;
(2)求使x=1的概率取得最大值的n的值.(參考數(shù)據(jù):$\sqrt{9901}$≈99.50)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)${0.064^{-\frac{1}{3}}}-{({-\frac{1}{8}})^0}+{16^{\frac{3}{4}}}+{0.25^{\frac{1}{2}}}$;
(2)${2^{2+{{log}_2}5}}-{2^{{{log}_2}3{{log}_3}5}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)=x+tanA•tanB-1,其中A,B是△ABC的內(nèi)角.
(1)若[f(1)-1]cosA•cosB=$\frac{1}{2}$,且A=$\frac{π}{4}$,a=$\sqrt{2}$.求c的長;
(2)若函數(shù)f(x)在(0,1)內(nèi)有零點(diǎn),試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知隨機(jī)事件A的概率P(A)=0.5,事件B的概率P(B)=0.6,條件概率 P(B|A)=0.8,則P(A∪B)=0.7.

查看答案和解析>>

同步練習(xí)冊答案