18.函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x+1)=f(x-1),當(dāng)x∈[0,1]時(shí),f(x)=2x,若方程ax+a-f(x)=0(a>0)恰有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$,1).

分析 若方程ax+a-f(x)=0(a>0)恰有三個(gè)不相等的實(shí)數(shù)根,則函數(shù)f(x)與y=a(x+1)的圖象有三個(gè)不同的交點(diǎn),由函數(shù)的性質(zhì)可作出它們的圖象,由斜率公式可得邊界,進(jìn)而可得答案.

解答 解:若方程ax+a-f(x)=0(a>0)恰有三個(gè)不相等的實(shí)數(shù)根,
等價(jià)于函數(shù)f(x)與y=a(x+1)的圖象有三個(gè)不同的交點(diǎn),
由f(x+1)=f(x-1),得f(x+2)=f(x),即函數(shù)的周期為2,且為偶函數(shù),
故函數(shù)f(x)的圖象如圖所示:

由于直線y=a(x+1)過定點(diǎn)B(-1,0),
當(dāng)直線過點(diǎn)A(1,2)時(shí),a=1,恰好不滿足條件.
當(dāng)直線過點(diǎn)A(-2,0)時(shí),a=$\frac{1}{2}$,恰好滿足條件.
數(shù)形結(jié)合可得實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$,1),
故答案為:[$\frac{1}{2}$,1).

點(diǎn)評(píng) 本題考查方程根的存在性及個(gè)數(shù)的判斷,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求函數(shù)y=lg[$\sqrt{3}$-($\sqrt{3}$-1)tanx-tan2x]+$\sqrt{9-{x}^{2}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在銳角△ABC中,b=3,c=8,S△ABC=6,則∠A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐P-ABCD中底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC中點(diǎn),作EF⊥PB于點(diǎn)F.
(1)證明PB⊥平面EFD;
(2)求PA與平面PDB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且Sn,an,$\frac{1}{2}$成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=4-2n(n∈N*),設(shè)cn=$\frac{_{n}}{{a}_{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知f(x)是偶函數(shù),g(x)是奇函數(shù),且f(x)+g(x)=$\frac{1}{x-1}$,求f(x),g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}滿足a1=2,an+1=4an+2n+1(n∈N*).
(1)令bn=$\frac{{a}_{n}}{{2}^{n}}$+1,求證:數(shù)列{bn}為等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求滿足an≥240的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知0<a<2,l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,求l1,l2與坐標(biāo)軸圍成的四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在數(shù)列{an}中,an+1=3an+2n+1,a1=1,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案