2.在極坐標中,若等邊△ABC的兩個頂點是A(2,$\frac{π}{4}$)、B(2,$\frac{5π}{4}$),那么頂點C的坐標可能是($2\sqrt{3}$,$\frac{3π}{4}$)或($2\sqrt{3}$,-$\frac{π}{4}$。

分析 由題設(shè)可知A、B兩點關(guān)于極點O對稱,即O是AB的中點.

解答 點C在AB的垂直平分線上,并且C點對應(yīng)的極徑為C對應(yīng)的極角θ=$\frac{π}{4}$+$\frac{π}{2}$=$\frac{3π}{4}$或θ=$\frac{π}{4}$-$\frac{π}{2}$=-$\frac{π}{4}$,即C點極坐標為($2\sqrt{3}$,$\frac{3π}{4}$)或($2\sqrt{3}$,-$\frac{π}{4}$).
故答案為:($2\sqrt{3}$,$\frac{3π}{4}$)或($2\sqrt{3}$,-$\frac{π}{4}$).

點評 本題考查極坐標系,在找點的極坐標時,把圖形畫出來,通過畫圖解決問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.自平面上一點O引兩條射線OA,OB,P在OA上運動,Q在OB上運動且保持|$\overrightarrow{PQ}$|為定值2$\sqrt{2}$(P,Q不與O重合).已知∠AOB=120°,
(1)PQ的中點M的軌跡是橢圓的一部分(不需寫具體方程);
(2)N是線段PQ上任-點,若|OM|=1,則$\overrightarrow{OM}$•$\overrightarrow{ON}$的取值范圍是[1-$\frac{\sqrt{5}}{2}$,1+$\frac{\sqrt{5}}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下面是關(guān)于公差d>0的等差數(shù)列{an}的四個命題:
(1)數(shù)列{an}是遞增數(shù)列;
(2)數(shù)列{nan}是遞增數(shù)列;
(3)數(shù)列$\left\{{\frac{a_n}{n}}\right\}$是遞減數(shù)列;
(4)數(shù)列{an+3nd}是遞增數(shù)列.
其中的真命題的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知等差數(shù)列{an}的前n項和為Sn,且S10=5,a7=1,則a1=( 。
A.-$\frac{1}{2}$B.-1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)不等式組$\left\{\begin{array}{l}{2x-3y+6≥0}\\{4x-y-8≤0}\\{x+y-2≥0}\end{array}\right.$表示的平面區(qū)域為Ω,則當直線y=k(x-1)與區(qū)域Ω有公共點時,k的取值范圍是( 。
A.[-2,+∞)B.(-∞,0]C.[-2,0]D.(-∞,-2]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|(x-4)(x+2)<0},B={-3,-1,1,3,5},則A∩B=(  )
A.{-1,1,3}B.{-3,-1,1,3}C.{-1,1,3,5}D.{-3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,在正方形ABCD中,AD=4,E為DC上一點,且$\overrightarrow{DE}$=3$\overrightarrow{EC}$,則$\overrightarrow{AB}$•$\overrightarrow{AE}$( 。
A.20B.16C.15D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列判斷錯誤的是( 。
A.命題“若am2≤bm2,則a≤b”是假命題
B.命題“?x∈R,x3-x2-1≤0”的否定是“?x0∈R,${{x}_{0}}^{3}$-${{x}_{0}}^{2}$-1>0”
C.“若a=1,則直線x+y=0和直線x-ay=0互相垂直”的逆否命題為真命題
D.命題“p∨q為真命題”是命題“p∧q為真”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知n=${∫}_{1}^{e}\frac{6}{x}$dx,那么${({x^2}-\frac{1}{x})^n}$的展開式中的常數(shù)項為15.

查看答案和解析>>

同步練習(xí)冊答案