分析 (1)利用橢圓的定義,即可求動點M的軌跡E的方程;
(2)設直線l的方程為:y=kx+1與橢圓方程聯(lián)立,求出B的坐標,利用$\sqrt{2}$$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,求出P的坐標,即可求直線l的方程.
解答 解:(1)$\sqrt{(x+1)^{2}+{y}^{2}}$+$\sqrt{(x-1)^{2}+{y}^{2}}$=2$\sqrt{2}$表示M(x,y)與(-1,0),(1,0)的距離的和為2$\sqrt{2}$,滿足橢圓的定義,且c=1,2a=2$\sqrt{2}$,
∴a=$\sqrt{2}$,b=1,
∴動點M的軌跡E的方程是$\frac{{x}^{2}}{2}+{y}^{2}$=1;
(2)設直線l的方程為:y=kx+1,B(x1,y1),P(x0,y0).
與$\frac{{x}^{2}}{2}+{y}^{2}$=1聯(lián)立,化為(1+2k2)x2+4kx=0,
∴x1=-$\frac{4k}{1+2{k}^{2}}$,y1=$\frac{1-2{k}^{2}}{1+2{k}^{2}}$
∵$\sqrt{2}$$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,
∴$\sqrt{2}$(x0,y0)=(0,1)+(x1,y1),
∴x0=$\frac{\sqrt{2}}{2}$x1=-$\frac{2\sqrt{2}k}{1+2{k}^{2}}$,y0=$\frac{\sqrt{2}}{1+2{k}^{2}}$,
代入橢圓方程可得:$\frac{1}{2}$(-$\frac{2\sqrt{2}k}{1+2{k}^{2}}$)2+($\frac{\sqrt{2}}{1+2{k}^{2}}$)2=1,
解得k=±$\frac{\sqrt{2}}{2}$,
∴直線l的方程為:y=±$\frac{\sqrt{2}}{2}$x+1.
點評 本題考查了橢圓的標準方程及其性質、直線與橢圓相交問題轉化為方程聯(lián)立可得根與系數(shù)的關系、點與橢圓的關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ${x^2}-\frac{y^2}{4}=1$ | B. | ${y^2}-\frac{x^2}{4}=1$ | ||
C. | $\frac{x^2}{4}-\frac{y^2}{16}=1$,或$\frac{y^2}{4}-\frac{x^2}{16}=1$ | D. | ${x^2}-\frac{y^2}{4}=1$,或${y^2}-\frac{x^2}{4}=1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲 | 6 | 6 | 9 | 9 |
乙 | 7 | 9 | x | y |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com