9.設(shè)函數(shù)f(x)=cos(ωx+φ),(ω>0,-$\frac{π}{2}$<φ<0)的最小正周期為π,且f($\frac{π}{6}$)=1.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{3}$個單位長度,再將所得圖象上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在[-$\frac{π}{6}$,$\frac{2π}{3}$]上的值域.

分析 (1)根據(jù)條件建立方程關(guān)系即可求函數(shù)f(x)的解析式;
(2)根據(jù)三角函數(shù)的單調(diào)性即可求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)根據(jù)三角函數(shù)的圖象變換關(guān)系求出函數(shù)g(x)的解析式,結(jié)合三角函數(shù)的性質(zhì)進行求解即可.

解答 解:(1)∵函數(shù)的周期是π,
∴$\frac{2π}{ω}=π$,得ω=2,
則f(x)=cos(2x+φ),
∵f($\frac{π}{6}$)=1,
∴f($\frac{π}{6}$)=cos(2×$\frac{π}{6}$+φ)=1,
即$\frac{π}{3}$+φ=2kπ,
即φ=2kπ-$\frac{π}{3}$,
∵-$\frac{π}{2}$<φ<0,
∴φ=-$\frac{π}{3}$
則函數(shù)f(x)的解析式f(x)=cos(2x-$\frac{π}{3}$);
(2)依題意,2kπ-π≤2x-$\frac{π}{3}$≤2kπ(k∈Z),
∴kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$(k∈Z),
∴y=cos(2x-$\frac{π}{3}$)的單調(diào)遞增區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z).
(3)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{3}$個單位長度,得到y(tǒng)=cos[2(x+$\frac{π}{3}$)-$\frac{π}{3}$]=cos(2x+$\frac{π}{3}$);
再將所得圖象上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)=cos(x+$\frac{π}{3}$),
∵x∈[-$\frac{π}{6}$,$\frac{2π}{3}$],
∴x+$\frac{π}{3}$∈[$\frac{π}{6}$,π],
∴-1≤g(x)≤$\frac{\sqrt{3}}{2}$,
即函數(shù)g(x)的值域為[-1,$\frac{\sqrt{3}}{2}$].

點評 本題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)條件求出函數(shù)的解析式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)等比數(shù)列{an}的前n項和為Sn,若a2013=3S2012+2014,a2012=3S2011+2014,則公比q等于( 。
A.4B.1或4C.2D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某市的出租車價格規(guī)定:起步費11元,可行3千米,以后按每千米2.1元計價.可再行7千米,10千米以后全部按每千米3.15元的單價計價,途中等待時間每五分鐘按1千米行程計價.
(1)假設(shè)途中等待時間為零,寫出車費y(元)與行車?yán)锍蘹(千米)之間的關(guān)系式;
(2)如果現(xiàn)在有人要乘出租車去某地,路程為15千米,為了合理地少付車費,是否可以考慮半途換車或要求“翻牌”(即重新開始計價,相當(dāng)于乘客下車后重新上車),請你設(shè)計一個較優(yōu)的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x,x∈[0,2)}\\{4-x,x∈[2,3)}\\{\frac{5}{2}-\frac{x}{2},x∈[3,5]}\end{array}\right.$,求f(x)在區(qū)間[0,5]上的定積分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow{a}$=(-3,2),$\overrightarrow$=(2,-5),則2$\overrightarrow{a}$-3$\overrightarrow$=(-12,19).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的各條棱中,最長的棱的長度為(  )
A.$2\sqrt{3}$B.$2\sqrt{2}$C.$\sqrt{10}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=|log4x|,正實數(shù)m、n滿足m<n,且f(m)=f(n),若f(x)在區(qū)間[m5,n]上的最大值為5,則m、n的值分別為( 。
A.$\frac{1}{2}$、2B.$\frac{1}{4}$、4C.$\frac{1}{4}$、2D.$\frac{1}{2}$、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}為等比數(shù)列,且a4•a6=2a5,設(shè)等差數(shù)列{bn}的前n項和為Sn,若b5=2a5,則S9=( 。
A.36B.27C.54D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|x2-3x<0},B={x||x|<2},則A∩B=( 。
A.{x|2<x<3}B.{x|-2<x<0}C.{x|0<x<2}D.{x|-2<x<3}

查看答案和解析>>

同步練習(xí)冊答案