點(diǎn)A(1,0),B(0,1),點(diǎn)C在第二象限內(nèi),已知∠AOC=
6
,|
OC
|=2,且
OC
OA
OB
,則λ,μ的值分別是(  )
A、-1,
3
B、-
3
,1
C、1,-
3
D、
3
,-1
考點(diǎn):平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:由已知易得:
OA
=(1,0),
OB
=(0,1),
OC
=(-
3
,1),進(jìn)而由
OC
OA
OB
,得到λ,μ的值.
解答: 解:∵點(diǎn)A(1,0),B(0,1),
OA
=(1,0),
OB
=(0,1),
∵∠AOC=
6
,|
OC
|=2,
OC
=(2cos
6
,2sin
6
)=(-
3
,1),
OC
OA
OB
,
∴(-
3
,1)=(λ,μ)
即λ=-
3
,μ=1,
故選:B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平面向量的基本定理及其意義,其中根據(jù)平面向量的基本定理構(gòu)造關(guān)于λ,μ的方程是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x=-2與x=4是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn),則常數(shù)a-b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax7+bx5+cx3+
d
x
+6,若f(3)=5,則f(-3)=(  )
A、-5B、7C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={1,2,3,5},N={x|x=2k-1,k∈M},則M∩N=(  )
A、{1,2,3}
B、{1,3,5}
C、{2,3,5}
D、{1,3,4,5,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
-3,(x>0)
x2+bx+c,(x≤0)
,若f(-4)=f(0),f(-2)=0,則關(guān)于x的不等式f(x)≤1的解集為( 。
A、(-∞,-3]∪[-1,+∞)
B、[-3,-1]
C、[-3,-1]∪(0,+∞)
D、[-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、函數(shù)在閉區(qū)間上的極大值一定比極小值大
B、函數(shù)在閉區(qū)間上的最大值一定是極大值
C、函數(shù)f(x)=x3+ax2-x+1必有2個(gè)極值
D、函數(shù)f(x)在區(qū)間(a,b)上一定存在最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,Sn=48,S2n=60,則S3n等于( 。
A、26B、27C、62D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(ωx+φ)(0<φ<π)為偶函數(shù),其圖象與直線y=2某兩個(gè)公共點(diǎn)的橫坐標(biāo)為x1,x2,若|x1-x2|的最小值為π,則該函數(shù)的一個(gè)遞增區(qū)間可以是(  )
A、(-
π
2
,0)
B、(-
π
4
,
π
4
C、(0,
π
2
D、(
π
4
,
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡或求值:
(1)2(
32
×
3
6+(
2
2
)
4
3
-4(
16
49
)
1
2
-
42
×80.25+(-2005)0
(2)log2.56.25+lg
1
100
+ln
e
+21+log23=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案