設(shè)x=-2與x=4是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn),則常數(shù)a-b的值為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:由已知得f′(x)=3x2+2ax+b,且
f(-2)=12-4a+b=0
f(4)=48+8a+b=0
,由此利用導(dǎo)數(shù)性質(zhì)能求出常數(shù)a-b的值.
解答: 解:∵f(x)=x3+ax2+bx,
∴f′(x)=3x2+2ax+b,
∵x=-2與x=4是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn),
f(-2)=12-4a+b=0
f(4)=48+8a+b=0
,
解得a=-3,b=-24,
∴a-b=21.
故答案為:21.
點(diǎn)評(píng):本題主要考查極值的概念、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),同時(shí)考查推理論證能力,分類(lèi)討論等綜合解題能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y∈R,a>1,b>1.若ax=by=5,a+b=10,則
1
x
+
1
y
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,c=3
2
+
6
,C=60°,則a+b的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=-x3+3x2在點(diǎn)(1,2)處的切線與坐標(biāo)軸圍成的三角形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線y=kx與圓x2+y2-6x+8=0相切,且切點(diǎn)在第四象限,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1-x
-
1+x
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊a,b,c滿(mǎn)足a+c=2b,則稱(chēng)該三角形為“中庸”三角形.已知△ABC為“中庸”三角形,給出下列結(jié)論:
a
c
∈(
1
2
,2);
1
a
+
1
c
2
b
;
③B≥
π
3
;
④若
AB
2
=
AB
AC
+
BA
BC
+
CA
CB
,則sinB=
4
5

其中正確結(jié)論的序號(hào)是
 
.(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程
(x-1)2+(y-2)2
|x+y+1|
=
2
2
表示的曲線類(lèi)型為( 。
A、直線B、拋物線
C、橢圓D、雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)A(1,0),B(0,1),點(diǎn)C在第二象限內(nèi),已知∠AOC=
6
,|
OC
|=2,且
OC
OA
OB
,則λ,μ的值分別是( 。
A、-1,
3
B、-
3
,1
C、1,-
3
D、
3
,-1

查看答案和解析>>

同步練習(xí)冊(cè)答案