分析 直接利用二倍角公式以及同角三角函數(shù)的基本關系式化簡求解即可.
解答 解:角α在第一象限且cosα=$\frac{3}{5}$,故sinα=$\frac{4}{5}$.
$\frac{1+\sqrt{2}cos(2α-\frac{π}{4})}{sin(α+\frac{π}{2})}$=$\frac{1+\sqrt{2}(\frac{\sqrt{2}}{2}cos2α+\frac{\sqrt{2}}{2}sin2α)}{cosα}$=$\frac{1+cos2α+sin2α}{cosα}$=$\frac{2{cos}^{2}α+2sinαcosα}{cosα}$
=2sinα+2cosα
=2×$(\frac{3}{5}+\frac{4}{5})$
=$\frac{14}{5}$.
點評 本題考查誘導公式以及同角三角函數(shù)的基本關系式二倍角公式的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a=$\sqrt{5}$r | B. | a=2r | C. | a=$\sqrt{3}$r | D. | a=$\sqrt{2}$r |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若-3≤m<n,則f(m)<f(n) | B. | 若m<n≤0,則f(m)<f(n) | ||
C. | 若f(m)<f(n),則m2<n2 | D. | 若f(m)<f(n),則m3<n3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2≤x≤1} | B. | {x|0<x≤1} | C. | {x|0<x<2} | D. | {x|x<R} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com