3.點(diǎn)(2,-1)在圓$\left\{\begin{array}{l}x=1+2cosθ\\ y=2sinθ\end{array}\right.$(θ為參數(shù))的( 。
A.內(nèi)部B.圓上C.外部D.與θ相關(guān)

分析 求出圓的普通方程,計(jì)算圓心與點(diǎn)(2,-1)的距離即可判斷.

解答 解:圓的普通方程為(x-1)2+y2=4,
∵(2-1)2+(-1)2=2<4,
∴點(diǎn)(-2,1)在圓內(nèi)部.
故選:A.

點(diǎn)評(píng) 本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,點(diǎn)與圓的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖為某校語(yǔ)言類專業(yè)N名畢業(yè)生的綜合測(cè)評(píng)成績(jī)(百分制)分布直方圖,已知80~90分?jǐn)?shù)段的人數(shù)為19.
(1)求該專業(yè)畢業(yè)總?cè)藬?shù)N和90~95分?jǐn)?shù)段內(nèi)的人數(shù)n;
(2)現(xiàn)欲將90~95分?jǐn)?shù)段內(nèi)的n名人分配到幾所學(xué)校,從中安排2人到甲學(xué)校去,若n人中僅有2名男生,求安排結(jié)果至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知D、C、B三點(diǎn)在地面同一直線上,DC=a,從C、D兩點(diǎn)測(cè)得A的點(diǎn)仰角分別為α、β(α>β),則A點(diǎn)離地面的高AB等于( 。
A.$\frac{asinαsinβ}{sin(α-β)}$B.$\frac{asinαsinβ}{cos(α-β)}$C.$\frac{acosαcosβ}{sin(α-β)}$D.$\frac{acosαcosβ}{cos(α-β)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.下列四個(gè)命題:
①3+4i比2+4i大;
②復(fù)數(shù)3-2i的實(shí)部為3,虛部為-2i
③z1,z2為復(fù)數(shù),z1-z2>0,那么z1>z2
④z1,z2為復(fù)數(shù),若z12+z22=0,那么z1=z2=0.
其中不正確的命題有①②③④(寫出所有正確命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.底面半徑為$\sqrt{3}$,母線長(zhǎng)為2的圓錐的外接球O的表面積為( 。
A.B.12πC.D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若$\overrightarrow{AB}$=(3,4),$\overrightarrow{AC}$=(1,3),則$\overrightarrow{BC}$=(  )
A.(2,1)B.(4,7)C.(-2,-1)D.(-4,-7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.曲線y=x3+3x2-1在點(diǎn)(-1,1)處的切線方程是(  )
A.y=-3x+4B.y=-3x-2C.y=-4x+3D.y=4x-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且Sn=n2+n+1,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.生產(chǎn)過(guò)程有4道工序,每道工序需要安排一人照看,現(xiàn)從甲、乙、丙等6名工人中安排4人分別照看一道工序,第一道工序安排乙做,第四道工序只能從甲、丙兩人中安排1人,則不同的安排方案有多少種?

查看答案和解析>>

同步練習(xí)冊(cè)答案