分析 (1)運(yùn)用數(shù)列通項和前n項和的關(guān)系:當(dāng)n=1時,a1=S1;當(dāng)n>1時,an=Sn-Sn-1,計算即可得到所求通項公式;
(2)求得當(dāng)n=1時,T1=$\frac{1}{12}$;當(dāng)n≥2時,$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2n•2(n+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),由數(shù)列的求和方法:裂項相消求和,化簡即可得到所求和.
解答 解:(1)當(dāng)n=1時,a1=S1=1+1+1=3;
當(dāng)n≥2時,Sn=n2+n+1,
Sn-1=(n-1)2+(n-1)+1,
兩式相減得:an=Sn-Sn-1=n2+n-(n-1)2-(n-1)
=(2n-1)+1=2n.
但a1=3不符合上式,
因此an=$\left\{\begin{array}{l}{3,n=1}\\{2n,n≥2}\end{array}\right.$;
(2)當(dāng)n=1時,T1=$\frac{1}{{a}_{1}{a}_{2}}$=$\frac{1}{3•4}$=$\frac{1}{12}$;
當(dāng)n≥2時,$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2n•2(n+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
前n項和Tn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$
=$\frac{1}{12}$+$\frac{1}{4}$($\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=$\frac{1}{12}$+$\frac{1}{4}$($\frac{1}{2}$-$\frac{1}{n+1}$)=$\frac{5}{24}$-$\frac{1}{4(n+1)}$.
且T1=$\frac{1}{12}$符合上式,
因此Tn=$\frac{5}{24}$-$\frac{1}{4(n+1)}$.
點評 本題考查數(shù)列的通項公式的求法,注意運(yùn)用數(shù)列通項和前n項和的關(guān)系:當(dāng)n=1時,a1=S1;當(dāng)n>1時,an=Sn-Sn-1,考查數(shù)列的求和方法:裂項相消求和,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 內(nèi)部 | B. | 圓上 | C. | 外部 | D. | 與θ相關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 60°或120° | C. | 30°或150° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com