Processing math: 100%
9.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:x2a2+y22=1(a>b>0)的離心率為223,經(jīng)過橢圓的左頂點A(-3,0)作斜率為k(k≠0)的直線l交橢圓C于點D,交軸于點E
(1)求橢圓C的方程;
(2)已知點P為線段AD的中點,是否存在定點Q,對于任意的k(k≠0)都有OP⊥EQ,若存在,求出點Q的坐標(biāo),若不存在,說明理由.

分析 (1)由橢圓的離心率和左頂點,求出a,b,由此能求出橢圓C的標(biāo)準(zhǔn)方程.
(2)直線l的方程為y=k(x+3),與橢圓聯(lián)立,利用韋達(dá)定理、直線垂直,結(jié)合題意能求出結(jié)果.

解答 解:(1)由題意,a=3,ca=223
∴c=22,b=1,
∴橢圓C的方程x29+y2=1;
(2)設(shè)直線的方程為y=k(x+3),
代入橢圓方程,消元得(9k2+1)x2+54k2x+81k2-9=0,
∴x=-3或327k29k2+1…(6分)
∴D(327k29k2+1,6k9k2+1),
又∵點P為AD的中點,∴P(-27k29k2+13k9k2+1),
則kOP=-19k(k≠0),…(9分)
直線l的方程為y=k(x+3),令x=0,得E(0,3k),
假設(shè)存在定點Q(m,n)(m≠0)使得OP⊥EQ,則kOP•kEQ=-1,
即-19kn3km=-1,
∴(9m-3)k+n=0恒成立
{9m3=0n=0,即m=13,n=0,
因此定點Q的坐標(biāo)為(13,0)…(12分)

點評 本題考查橢圓方程的求法,考查滿足條件的定點是否存在的判斷與求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,若sin2A+sin2Bsin2C=1,則△ABC的形狀一定是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=13x3-12(a+1)x2-4(a+5)x,g(x)=5lnx+12ax2-x+5,其中a∈R.
(1)若函數(shù)f(x),g(x)有相同的極值點,求a的值;
(2)若存在兩個整數(shù)m,n,使得函數(shù)f(x),g(x)在區(qū)間(m,n)上都是減函數(shù),求n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.不等式-x2+2x+5<-2x的解集是(  )
A.{x|x≥5或x≤-1}B.{x|x>5或x<-1}C.{x|-1<x<5}D.{x|-1≤x≤5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}是等差數(shù)列,其前n項和為Sn,若a3+a4+a5=9,則S7=( �。�
A.21B.28C.35D.42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)f(x)={xxax2x[a+,若f(2)=4,則a的取值范圍為a≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知正項數(shù)列{an}中,a1=1,na2n+1-anan+1=(n+1)a2n,則an=( �。�
A.nB.2nC.n+2D.2n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知tanα=12,求tan2α,cot2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線C:x2a2-y22=1(a>0,b>0)的左,右焦點分別為F1、F2,AF2F2B(λ>0),其中A、B為雙曲線右支上的兩點.若在△AF1B中,∠F1AB=90°,|F1B|=2|AB|,則雙曲線C的離心率的平方的值為( �。�
A.5+22B.5-22C.6-2D.6+2

查看答案和解析>>

同步練習(xí)冊答案