18.在約束條件:$\left\{\begin{array}{l}{x≤1}\\{y≤2}\\{x+y-1≥0}\end{array}\right.$下,目標函數(shù)z=ax+by(a>0,b>0)的最大值為1,則ab的最大值等于( 。
A.$\frac{1}{2}$B.$\frac{3}{8}$C.$\frac{1}{4}$D.$\frac{1}{8}$

分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)取得最大值,確定a,b的關系,利用基本不等式求ab的最大值.

解答 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分),
由z=ax+by(a>0,b>0),則$y=-\frac{a}x+\frac{z}$,平移直線$y=-\frac{a}x+\frac{z}$,由圖象可知當直線$y=-\frac{a}x+\frac{z}$經過點A(1,2)時直線的截距最大,此時z最大為1.
代入目標函數(shù)z=ax+by得a+2b=1.
則1=a+2b≥2$\sqrt{2ab}$,
則ab≤$\frac{1}{8}$當且僅當a=2b=$\frac{1}{2}$時取等號,
∴ab的最大值等于$\frac{1}{8}$,
故選:D.

點評 本題主要考查線性規(guī)劃的應用,利用數(shù)形結合以及基本不等式是解決此類問題的基本方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知復數(shù)z=$\frac{2}{1+i}$,則下列判斷正確的是(  )
A.z的實部為-1B.|z|=$\sqrt{2}$
C.z的虛部為-iD.z的共軛復數(shù)為1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.某學校食堂早餐只有花卷、包子、面條和蛋炒飯四種主食可供食用,有5名同學前去就餐,每人只選擇其中一種,且每種主食都至少有一名同學選擇.已知包子數(shù)量不足僅夠一人食用,甲同學腸胃不好不會選擇蛋炒飯,則這5名同學不同的主食選擇方案種數(shù)為( 。
A.144B.132C.96D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知雙曲線x2-$\frac{{y}^{2}}{4}$=1,過點P(1,1)能否做一條直線l,與雙曲線交于A,B兩點,且點P是線段AB的中點?若能,求出直線l的方程,若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設數(shù)列{an}是的等差數(shù)列,Sn為其前n項和.若S6=8S3,a3-a5=8,則a20=( 。
A.4B.36C.-74D.80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若復數(shù)滿足(3-4i)z=|4+3i|,i是虛數(shù)單位,則z的虛部為( 。
A.-4B.$\frac{4}{5}$C.4D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若x,y滿足約束條件$\left\{\begin{array}{l}{x-5≤0}\\{y-3≥0}\\{y≤x+1}\\{\;}\end{array}\right.$,則目標函數(shù)z=-x+y的最小值為( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)$f(x)=sinxcosx+{sin^2}x-\frac{1}{2}$.
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)若$α∈(0,\;\frac{π}{2})$,且$f(α)=\frac{{\sqrt{2}}}{2}$,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知直線l:2x+y-b=0,圓C:(x-$\sqrt{3}$)2+y2=4,則“0<b<1”是“l(fā)與C相交”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案