10.如圖,四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點.
(1)證明:PA∥平面EDB;
(2)求直線PB與平面ABCD所成角的正弦值.

分析 (1)連接AC交BD于O.連接EO,由三角形中位線定理得PA∥EO,由此能證明PA∥平面EDB.
(2)由PD⊥底面ABCD,得∠PBD為直線PB與平面ABCD所成角,由此能求出直線PB與平面ABCD所成角的正弦值.

解答 證明:(1)如圖,連接AC交BD于O.連接EO.
∵底面ABCD是正方形,
∴點O是AC的中點,
在△PAC中,∵E是PC的中點,∴EO是中位線,
∴PA∥EO.
而EO?平面EDB,且PA?平面EDB.
所以PA∥平面EDB.(6分)
解:(2)∵四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,
∴由題意PD⊥底面ABCD,∴∠PBD為直線PB與平面ABCD所成角,(8分)
設(shè)PD=DC=1,在Rt△PBD中,BD=$\sqrt{1+1}$=$\sqrt{2}$,PB=$\sqrt{2+1}=\sqrt{3}$,
∴sin∠PBD=$\frac{PD}{PB}$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
∴直線PB與平面ABCD所成角的正弦值為$\frac{\sqrt{3}}{3}$.(12分)

點評 本題考查線面平行的證明,考查線面角的正弦值的求法,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖,其正視圖中的曲線部分為半個圓弧,則該幾何體的表面積為( 。
A.16+6$\sqrt{2}$+4πB.16+6$\sqrt{2}$+3πC.10+6$\sqrt{2}$+4πD.10+6$\sqrt{2}$+3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若關(guān)于x的方程2x3-3x2+a=0在區(qū)間[-2,2]上僅有一個實根,則實數(shù)a的取值范圍為( 。
A.(-4,0]∪[1,28)B.[-4,28]C.[-4,0)∪(1,28]D.(-4,28)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一個幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{4}{3}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知正四棱錐側(cè)面是正三角形,則側(cè)棱與底面所成角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)拋物線y2=2px(p>0)的焦點為F,若F到直線y=$\sqrt{3}$x的距離為$\sqrt{3}$,則p=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知非零向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{3}$,且|$\overrightarrow$|=1,|$\overrightarrow$-2$\overrightarrow{a}$|=1,則|$\overrightarrow{a}$|=( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知圓O:x2+y2=4,M(1,0),直線l:x+y=b,P在圓O上,Q在直線l上,滿足$\overrightarrow{MP}$•$\overrightarrow{MQ}$=0,|$\overrightarrow{MP}$|=|$\overrightarrow{MQ}$|,則b的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.?dāng)?shù)列{an}滿足a1=2,an+1=$\frac{2(n+2)}{n+1}$an(n∈N+),則$\frac{{a}_{2016}}{{a}_{1}+{a}_{2}+…+{a}_{2016}}$=$\frac{2017}{4032}$.

查看答案和解析>>

同步練習(xí)冊答案