A. | 3 | B. | 4 | C. | 5 | D. | log${\;}_{\frac{1}{2}}$17 |
分析 根據(jù)函數(shù)的解析式將f(20)逐步化為:f(-1)+7后,代入解析式由對數(shù)的運算性質(zhì)求值.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(3-x),(x≤0)}\\{f(x-3)+1,(x>0)}\end{array}\right.$,
∴f(20)=f(17)+1=f(14)+2=f(11)+3=…=f(2)+6
=f(-1)+7=log${\;}_{\frac{1}{2}}$4+7=5,
故選:C.
點評 本題考查分段函數(shù)的函數(shù)值,注意自變量的范圍,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{5π}{6}$,0) | B. | ($\frac{2π}{3}$,0) | C. | ($\frac{π}{2}$,0) | D. | ($\frac{π}{3}$,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{16}{65}$ | B. | $\frac{56}{65}$ | C. | $\frac{63}{65}$ | D. | $\frac{16}{65}$或$\frac{56}{65}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | $\sqrt{10}$ | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 在區(qū)間[-$\frac{π}{6},\frac{π}{3}$]上單調(diào)遞減 | B. | 在區(qū)間[-$\frac{π}{6},\frac{π}{3}$]上單調(diào)遞增 | ||
C. | 在區(qū)間[-$\frac{π}{3},\frac{π}{6}$]上單調(diào)遞減 | D. | 在區(qū)間[-$\frac{π}{3},\frac{π}{6}$]上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com