8.已知(1-2x)2016=a0+a1x+a2x2+…+a2016x2016.求:
(1)a0+a1+a2+…+a2016的值;
(2)a0+a2+a4+…++a2014+a2016的值.

分析 (1)利用x=1代入求解即可.
(2)利用x=1與x=-1,然后求解即可.

解答 解:(1-2x)2016=a0+a1x+a2x2+…+a2016x2016
(1)令x=1,(1-2)2016=a0+a1+a2+…+a2016=1;
(2)當(dāng)x=-1時(shí),32016=a0-a1+a2+…+a2016…①,
由(1)a0+a1+a2+…+a2016=1…②,①+②可得:a0+a2+a4+…++a2014+a2016=$\frac{1}{2}$×32016+$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查二項(xiàng)式定理的應(yīng)用,賦值法的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知線性回歸直線方程是$\stackrel{∧}{y}$=1.23x+0.08,求m的值.
x23456
y2.23.8m6.57.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知實(shí)數(shù)x、y滿足方程x2+y2-4x+1=0.
(1)求$\frac{y}{x}$的最大值和最小值;
(2)求x2+y2的最大值和最小值;
(3)若b=x+y,求b的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若實(shí)數(shù)x、y滿足不等式組$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,且z=ax+y僅在點(diǎn)P(-$\frac{5}{2}$,$\frac{5}{2}$)處取得最小值,則a的取值范圍為( 。
A.0<a<1B.a>1C.a≥1D.a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,|$\overrightarrow{AB}-\overrightarrow{AC}$|=2,D是邊BC的中點(diǎn),$\overrightarrow{AE}$=$\frac{1}{3}\overrightarrow{AB}$
(1)求|$\overrightarrow{AD}$|
(2)若AD與CE相交于點(diǎn)F.試用$\overrightarrow{AB}$和$\overrightarrow{AC}$表示$\overrightarrow{AF}$
(3)若點(diǎn)M是線段BC上的一點(diǎn),且$\overrightarrow{AM}•(\overrightarrow{AB}+\overrightarrow{AC)}$=1,求|$\overrightarrow{AM}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.將5本不同的書(shū)分給4名學(xué)生,每人至少分1本,則不同的分法有240種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在直角坐標(biāo)系xOy中,直線l的方程是y=8,圓C的參數(shù)方程是$\left\{\begin{array}{l}x=2cosφ\(chéng)\ y=2+2sinφ\(chéng)end{array}\right.$(φ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線l和圓C的極坐標(biāo)方程;
(2)射線OM:θ=α(其中$0<α<\frac{π}{2}$)與圓C交于O、P兩點(diǎn),與直線l交于點(diǎn)M,射線ON:$θ=α+\frac{π}{2}$與圓C交于O、Q兩點(diǎn),與直線l交于點(diǎn)N,求$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$的最大值;
(3)在(2)的條件下,求三角形OMN的內(nèi)切圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若13sinα+5cosβ=9,13cosα+5sinβ=15,則sin(α+β)的值為( 。
A.$\frac{56}{65}$B.$\frac{33}{65}$C.$\frac{5}{6}$D.$\frac{16}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=(a2-1)x是其定義域上的單調(diào)減函數(shù),則實(shí)數(shù)a的取值集合為( 。
A.{a|0<a<1}B.$\left\{{\left.a\right|1<a<\sqrt{2}}\right\}$
C.$\left\{{\left.a\right|-\sqrt{2}<a<-1}\right.$或$\left.{1<a<\sqrt{2}}\right\}$D.$\left\{{\left.a\right|-\sqrt{2}<a<\sqrt{2}}\right\}$

查看答案和解析>>

同步練習(xí)冊(cè)答案