A. | ①③ | B. | ②④ | C. | ②③ | D. | ③④ |
分析 由已知圓心(k-1,3k),由兩圓的位置關(guān)系、圓心距、兩圓的半徑之差,能判斷出真命題個(gè)數(shù).
解答 解:根據(jù)題意得:圓心(k-1,3k),
圓心在直線y=3(x+1)上,故存在直線y=3(x+1)與所有圓都相交,選項(xiàng)②正確;
考慮兩圓的位置關(guān)系,
圓k:圓心(k-1,3k),半徑為$\sqrt{2}$|k|,
圓k+1:圓心(k-1+1,3(k+1)),即(k,3k+3),半徑為$\sqrt{2}$(k+1)2,
兩圓的圓心距d=$\sqrt{(k-k+1)^{2}+(3k-3k-3)^{2}}$=$\sqrt{10}$,
兩圓的半徑之差R-r=$\sqrt{2}$(k+1)2-$\sqrt{2}$k2=2$\sqrt{2}$k+$\sqrt{2}$,
任取k=1或2時(shí),(R-r>d),Ck含于Ck+1之中,選項(xiàng)①錯(cuò)誤;
若k取無(wú)窮大,則可以認(rèn)為所有直線都與圓相交,選項(xiàng)③錯(cuò)誤;
將(0,0)帶入圓的方程,則有(-k+1)2+9k2=2k4,即10k2-2k+1=2k4(k∈N*),
因?yàn)樽筮厼槠鏀?shù),右邊為偶數(shù),故不存在k使上式成立,即所有圓不過(guò)原點(diǎn),選項(xiàng)④正確.
則真命題的代號(hào)是②④.
故選:B.
點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1.02 | B. | 1.27 | C. | 1.39 | D. | 1.45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3+2$\sqrt{2}$ | B. | 4+2$\sqrt{3}$ | C. | 6+4$\sqrt{2}$ | D. | 8$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com