分析 (Ⅰ)欲求出實(shí)數(shù)a,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在切點(diǎn)處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.再由兩直線垂直的條件,從而可得a;
(Ⅱ)利用導(dǎo)數(shù)在切點(diǎn)處的值是曲線的切線斜率,再根據(jù)斜率等于傾斜角的正切值求出角的范圍.
解答 解:(Ⅰ)f′(x)=ex+xex,
∵曲線在x=$\frac{π}{4}$處的切線與直線ax-y+1=0互相垂直,
∴根據(jù)導(dǎo)數(shù)幾何意義得:f′($\frac{π}{4}$)=(1+$\frac{π}{4}$)•${e}^{\frac{π}{4}}$=-$\frac{1}{a}$
解得:a=-$\frac{1}{{e}^{\frac{π}{4}}•(1+\frac{π}{4})}$;
(Ⅱ)解:因?yàn)閥=$\frac{4}{{e}^{x}+1}$的導(dǎo)數(shù)為
y′=$\frac{-4{e}^{x}}{({e}^{x}+1)^{2}}$=$\frac{-4}{{e}^{x}+{e}^{-x}+2}$,
∵ex+e-x≥2$\sqrt{{e}^{x}•{e}^{-x}}$=2,
∴ex+e-x+2≥4,
∴y′∈[-1,0)
即tanα∈[-1,0),
∵0≤α<π
∴$\frac{3π}{4}$≤α<π.
即α的取值范圍是[$\frac{3π}{4}$,π).
點(diǎn)評(píng) 本題主要考查垂直直線的斜率關(guān)系、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識(shí).屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 8 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=tanx | B. | y=2x | C. | y=x3 | D. | y=lg(1+x2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com