17.如圖,已知凸四邊形ABCD的頂點在一個圓周上,另一個圓的圓心O在AB上,且與四邊形ABCD的其余三邊相切.點E在邊AB上,且AE=AD.
求證:O,E,C,D四點共圓.

分析 利用AD=AE,可得$∠AED=\frac{1}{2}({{{180}°}-∠A})$,根據(jù)四邊形ABCD的頂點在一個圓周上,可得180°-∠A=∠BCD,從而∠AED=∠DCO,即可證明O,E,C,D四點共圓.

解答 證明:因為AD=AE,
所以$∠AED=\frac{1}{2}({{{180}°}-∠A})$,
因為四邊形ABCD的頂點在一個圓周上,
所以180°-∠A=∠BCD,
從而∠AED=∠DCO,
所以O(shè),E,C,D四點共圓.

點評 本題考查O,E,C,D四點共圓,考查學生分析解決問題的能力,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{a}{x-1}$+lnx-1,a∈(0,+∞).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x=t為函數(shù)f(x)的極小值點,證明:f(t)<$\frac{1}{2}$t-$\frac{3}{2t}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,拋物線y=-x2+4交x軸于A,B兩點,頂點為C
(1)求△ABC的面積;
(2)在拋物線上求點P,使S△PAB=$\frac{1}{2}$S△ABC;
(3)拋物線y=-x2+4上是否存在點Q,使∠AQB=90°若存在,求出該點;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)$f(x)=\left\{\begin{array}{l}{x^3}-3x+1,x≥0\\{x^2}-2x-4,x<0\end{array}\right.$的零點個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知正三棱錐的體積為9$\sqrt{3}$cm3,高為3cm.則它的全面積為27$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知動點M(x,y)在過點(-$\frac{3}{2}$,-2)的圓x2+y2-2x+4y=0的兩條切線和x-y+1=0圍成的區(qū)域內(nèi),則$\frac{x+1}{x+2y-3}$的取值范圍為( 。
A.(-1,0)∪(0,$\frac{1}{7}$]B.[-1,0)∪(0,$\frac{1}{7}$]C.[-1,0)∪(0,$\frac{1}{7}$)D.[-1,$\frac{1}{7}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若函數(shù)f(x)=ex-1+2x-log${\;}_{\sqrt{2}}$ax(a>0)在區(qū)間(0,2)內(nèi)有兩個零點,則a的取值范圍為(  )
A.($\sqrt{2}$,${2}^{\frac{e}{2}}$)B.(0,2]C.(2,2${\;}^{\frac{e+2}{2}}$]D.(2${\;}^{\frac{3}{2}}$,2${\;}^{\frac{e+4}{4}}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在△ABC中,∠C=90°,∠A的平分線AD交BC于D,則$\frac{AB-AC}{CD}$=( 。
A.sinAB.cosBC.tanAD.cotA

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若x<0,要使4x+$\frac{9}{x}$取最大值,則x必須等于( 。
A.±$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{3}{2}$D.6

查看答案和解析>>

同步練習冊答案