定積分
2
1
(2x2-
1
x
)dx
=
 
考點:定積分
專題:導數(shù)的綜合應(yīng)用
分析:求出被積函數(shù)的原函數(shù),再代入積分上下限計算.
解答: 解:
2
1
(2x2-
1
x
)dx
=(
2
3
x3-lnx
)|
 
2
1
=
16
3
-ln2-
2
3
+0
=
14
3
-ln2;
故答案為:
14
3
-ln2
點評:本題考查了定積分的計算,關(guān)鍵是正確找出被積函數(shù)的原函數(shù).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖所示,正方形ABCD所在的平面與等腰△ABE所在的平面互相垂直,其中頂∠BAE=120°,AE=AB=4,F(xiàn)為線段AE的中點.
(Ⅰ)若H是線段BD上的中點,求證:FH∥平面CDE;
(Ⅱ)若H是線段BD上的一個動點,設(shè)直線FH與平面ABCD所成角的大小為θ,求tanθ的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[一π,π]內(nèi)隨機取兩個數(shù)分別記為a,b,則使得函數(shù)f(x)=4x2+4ax-b22有2個零點的概率為( 。
A、
π
4
B、1一
π
4
C、
π
2
D、l-
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)an(1-
x
)n
(n=2,3,4,…)的展開式中x的一次項的系數(shù),若bn=
(n+1)an+2
an+1
,則bn的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,由所給的已知條件解三角形,其中有兩解的是( 。
A、a=12,c=15,A=120°
B、a=30,c=28,B=60°
C、a=14,b=16,A=45°
D、b=20,A=120°,C=80°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c是鈍角△ABC中∠A,∠B,∠C的對邊,∠C為鈍角,△ABC的面積是5
3
,a=4,b=5,則c=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點M(x,y)滿足條件:
x+y≥2
x≤1
y≤2
,則z=-x+y的取值范圍是(  )
A、[-1,0]
B、[0,1]
C、[0,2]
D、[-1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是某幾何體的三視圖,其中正視圖是邊長為2的等邊三角形,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a1,a2,…,an,…是按先后順序排列的一列向量,若a1=(-2014,13),且an-an-1=(1,1),則其中模最小的一個向量的序號n=
 

查看答案和解析>>

同步練習冊答案