分析 設(shè)等邊△DEF的邊長(zhǎng)等于a,則由DE∥BC可得,△ADE∽△ABC,故有$\frac{a}{4}=\frac{3-\frac{\sqrt{3}}{2}a}{3}$,解得a 值,即得所求.
解答 解:設(shè)等邊△DEF的邊長(zhǎng)等于a,
則由DE∥BC可得,△ADE∽△ABC,
∴$\frac{a}{4}=\frac{3-\frac{\sqrt{3}}{2}a}{3}$
∴a=8$\sqrt{3}$-12,
∴等邊△DEF的邊長(zhǎng)等于8$\sqrt{3}$-12.
點(diǎn)評(píng) 本題考查相似三角形的性質(zhì),由△ADE∽△ABC 得到$\frac{a}{4}=\frac{3-\frac{\sqrt{3}}{2}a}{3}$是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=$\sqrt{{x}^{2}-1}$與g(x)=$\sqrt{x-1}$•$\sqrt{x+1}$ | B. | f(x)=x與g(x)=$\frac{{x}^{3}+x}{{x}^{2}+1}$ | ||
C. | y=x與y=($\sqrt{x}$)2 | D. | f(x)=$\sqrt{{x}^{2}}$與g(x)=$\root{3}{{x}^{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com