1.如圖是某算法的程序框圖,若輸出y值為4,則輸入的x最大負(fù)整數(shù)是( 。
A.-3B.-2C.-1D.-4

分析 模擬程序框圖的運(yùn)行過(guò)程,得出輸出y值為4,對(duì)應(yīng)log2x=4,再結(jié)合程序運(yùn)行過(guò)程,即可求出輸入的x最大負(fù)整數(shù).

解答 解:模擬程序框圖的運(yùn)行過(guò)程,知;
若輸出y值為4,則log2x=4,
∴x=16;
則16-3-3-3-3-3-3=-2;
故輸入的x最大負(fù)整數(shù)是-2.
故選:B.

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過(guò)程,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.某人射擊1次,命中8~10環(huán)的概率如表所示:
命中環(huán)數(shù)10環(huán)9環(huán)8環(huán)
概    率0.120.180.28
則他射擊1次,至少命中9環(huán)的概率為0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.一袋中裝有5個(gè)白球,3個(gè)紅球,現(xiàn)從袋中往外取球,每次任取一個(gè),取出后記下顏色,若為紅色則停止,若為白色則繼續(xù)抽取,設(shè)停止時(shí)從袋中抽取的白球的個(gè)數(shù)為隨機(jī)變量X,則P(x≤$\sqrt{6}$)=$\frac{23}{28}$,E(x)=$\frac{5}{4}$,V(x)=$\frac{27}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知數(shù)列{an}的通項(xiàng)公式為an=$\frac{n-\sqrt{51}}{n-\sqrt{52}}$,則在數(shù)列{an}的前30項(xiàng)中,最大項(xiàng)和最小項(xiàng)分別是(  )
A.a30,a1B.a1,a30C.a8,a30D.a8,a7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.計(jì)算:(2x+3y)(2x-3y)(16x4+36x2y2+81y4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.隨著人口老齡化的到來(lái),我國(guó)的勞動(dòng)力人口在不斷減少,“延遲退休”已經(jīng)成為人們?cè)絹?lái)越關(guān)注的話題,為了了解公眾對(duì)“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組對(duì)公務(wù)員和教師各抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:
  公務(wù)員 教師 合計(jì)
 同意延遲退休 40 n 70
 不同意延遲退休 m 20 p
 合計(jì) 50 50 100
附:

(Ⅰ)求上表中m,n,p的值,并問(wèn)是否有95%的把握認(rèn)為“是否同意延遲退休與不同的職業(yè)有關(guān)”.
(Ⅱ)現(xiàn)用分層抽樣方法(按同意和不同意分二層)從調(diào)查的兩個(gè)職業(yè)人群中各抽取五人,然后從每個(gè)職業(yè)的五人中各抽取兩人,將這四人中的同意延遲退休的人數(shù)記為x,求x的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知定義在R上的函數(shù)f(x)=-f(x+$\frac{3}{2}$),且f(-2)=f(-1)=-1,f(0)=2,則f(1)+f(2)+f(3)+…+f(2008)+f(2009)=( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,向量$\overrightarrow{m}$=(α,sinB+sinC),$\overrightarrow{n}$=(sinA,b-c)且$\overrightarrow{m}$$•\overrightarrow{n}$=bsinA
(1)求角C;
(2)若c=$\sqrt{3}$,求a+2b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=log2(2x+1).
(1)若函數(shù)g(x)的圖象與f(x)的圖象關(guān)于y軸對(duì)稱,求y=f(x)+g(x)的值域;
(2)記f-1(x)為函數(shù),f(x)的反函數(shù),若關(guān)于x的方程f-1(x)=m+f(x)在[1,2]上有解,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案