7.已知P(m,n)(m>0,n>0)是f(x)=$\frac{1}{3}$x3-$\frac{5}{2}$x2-x+$\frac{185}{6}$在點x=5處的切線上一點,則$\frac{1}{m}$+$\frac{4}{n}$的最小值是(  )
A.$\frac{9}{10}$B.$\frac{19}{21}$C.$\frac{10}{11}$D.$\frac{11}{10}$

分析 先根據(jù)導數(shù)的幾何意義求出切線方程,得到m+n=10,再由$\frac{1}{m}$+$\frac{4}{n}$=($\frac{1}{m}$+$\frac{4}{n}$)×$\frac{1}{10}$×(m+n)=$\frac{1}{10}$(5+$\frac{n}{m}$+$\frac{4m}{n}$),根據(jù)基本不等式即可求出答案.

解答 解:∵f(x)=$\frac{1}{3}$x3-$\frac{5}{2}$x2-x+$\frac{185}{6}$,
∴f′(x)=x2-5x-1,
∴f′(5)=52-5×5-1=-1,
∵f(5)=$\frac{1}{3}$×53-$\frac{5}{2}$×52-5+$\frac{185}{6}$=5,
∴切線方程為y-5=-(x-5),即x+y=10,
∵P(m,n)(m>0,n>0)是f(x)=$\frac{1}{3}$x3-$\frac{5}{2}$x2-x+$\frac{185}{6}$在點x=5處的切線上一點,
∴m+n=10,
∴$\frac{1}{m}$+$\frac{4}{n}$=($\frac{1}{m}$+$\frac{4}{n}$)×$\frac{1}{10}$×(m+n)=$\frac{1}{10}$(5+$\frac{n}{m}$+$\frac{4m}{n}$)≥$\frac{1}{10}$(5+2$\sqrt{\frac{n}{m}•\frac{4m}{n}}$)=$\frac{9}{10}$,當且僅當m=$\frac{10}{3}$,n=$\frac{20}{3}$時取等號,
故$\frac{1}{m}$+$\frac{4}{n}$的最小值是$\frac{9}{10}$,
故選:A.

點評 本題考查了導數(shù)的幾何意義,以及基本不等式的應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.(1)化簡  $\frac{sin3α}{sinα}$-$\frac{cos3α}{cosα}$;
(2)已知tan$\frac{α}{2}$=2,求$\frac{6sinα+cosα}{3sinα-2cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某學校為調(diào)查來自南方和北方的同齡大學生的身高差異,從2014級的年齡在17~19歲之間的大學生中隨機抽取了自南方和北方的大學生各10名,測量他們的身高,量出的身高如下(單位:cm)
南方:158,170,166,169,180,175,171,176,162,163
北方:183,173,169,163,179,171,157,175,178,166
(1)根據(jù)抽測結(jié)果,完成莖葉圖,并根據(jù)你填寫的莖葉圖,對來自南方和北方的大學生的身高作比較,寫出兩個統(tǒng)計結(jié)論;
(2)設抽測的10名南方大學生的平均身高為$\overline{x}$,將10名同學的身高依次輸入按程序框圖進行運算,問輸出的S大小為多少?并說明S的統(tǒng)計學意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.對于函數(shù)y=f(x),任意x∈R,均有f(x+2)=$\frac{1}{f(x)}$,當x∈(0,2]時,f(x)=x.
(1)當x∈(2,4]時,求f(x)的解析式;
(2)若f(m)=1,求m的值;
(3)求和:f(1)+f(2)+f(3)+…+f(2015).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知三角形ABC三個頂點的坐標分別為A(1,3),B(-2,-3),C(4,0).
(1)求AB邊所在直線的方程;
(2)求BC邊上的高所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知a>0,b>0,a+2b=1,則$\frac{1}{3a+4b}+\frac{1}{a+3b}$取到最小值為$\frac{4\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R)在定義域內(nèi)有兩個不同的極值點
(1)求a的取值范圍;
(2)記兩個極值點x1,x2,且x1<x2,已知λ>0,若不等式x1•x2λ>e1+λ恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A={y|y=x${\;}^{\frac{2}{3}}$,x≥1},B={y|y=($\frac{1}{2}$)x,x≥-1},則A∩B=(  )
A.{y|1≤y≤2}B.{y|y≥2}C.{y|$\frac{1}{2}$≤y≤1}D.{y|y≥1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x)=3f(x+2),當x∈[0,2)時,f(x)=-x2+2x.設f(x)在[2n-2,2n)上的最大值為an(n∈N*),且{an}的前n項和為Sn,則Sn的取值范圍是( 。
A.[1,$\frac{3}{2}$)B.[1,$\frac{3}{2}$]C.[$\frac{3}{2}$,2)D.[$\frac{3}{2}$,2]

查看答案和解析>>

同步練習冊答案