分析 (1)利用遞推關(guān)系即可得出;
(2)由(1)可得:an=log5bn=3-2n.因此bn=53-2n.再利用等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(1)數(shù)列{an}的前n項(xiàng)和Sn=2n-n2,
∴n=1時(shí),a1=S1=1;n≥2時(shí),an=Sn-Sn-1=2n-n2-[2(n-1)-(n-1)2]=3-2n.
∴an=3-2n,
(2)由(1)可得:an=log5bn=3-2n.
∴bn=53-2n=$\frac{125}{2{5}^{n}}$.
∴數(shù)列{bn}的前n項(xiàng)和Tn=$\frac{5(1-\frac{1}{2{5}^{n}})}{1-\frac{1}{25}}$=$\frac{125}{24}(1-\frac{1}{2{5}^{n}})$.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①③ | D. | ①②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com