5.已知集合A={x|y=lgx},B={y|y=2x},則(  )
A.A⊆BB.A∩B=∅C.A=BD.A∪B=R

分析 化簡集合A,B,即可得出結(jié)論.

解答 解:由A中的函數(shù)y=lgx,得到x>0,即A=(0,+∞);B={y|y=2x}=(0,+∞),
∴A=B.
故選:C.

點(diǎn)評 本題考查集合的化簡,考查集合的關(guān)系,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)已知一次函數(shù)f(x)滿足f(0)=5,且函數(shù)圖象過點(diǎn)(-2,1),求f(x);
(2)已知f(x)是二次函數(shù),且f(0)=0,f(x+1)=f(x)+x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知圓C:(x+1)2+y2=25,定點(diǎn)A(1,0),M為圓上的一個(gè)動點(diǎn),連接MA,作MA的垂直平分線交半徑MC于P,當(dāng)M點(diǎn)在圓周上運(yùn)動時(shí),點(diǎn)P的軌跡方程為$\frac{{x}^{2}}{\frac{25}{4}}+\frac{{y}^{2}}{\frac{21}{4}}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且對任意的a,b∈[-1,1],當(dāng)a+b≠0時(shí),都有$\frac{f(a)+f(b)}{a+b}$>0.
(1)試證明:對任意的a,b∈[-1,1],滿足:f(a)+f(-b)=f(a)-f(b);
(2)若a>b,試比較f(a)與f(b)的大。
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)這兩個(gè)函數(shù)的定義域的交集是空集,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(a+1)x2+ax+a(其中a>0).
(I)若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)有最小值為0,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)若函數(shù)f(x)恰有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在R上的函數(shù)y=f(x)滿足以下三個(gè)條件:
①對于任意的x∈R,都有f(x+4)=f(x);        
②對于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);
③函數(shù)y=f(x+2)的圖象關(guān)于y軸對稱   
則下列結(jié)論中正確的是( 。
A.f (4.5)<f (7)<f (6.5)B.f (7)<f (4.5)<f (6.5)C.f (7)<f (6.5)<f (4.5)D.f (4.5)<f (6.5)<f (7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單位:千克)與銷售價(jià)格x(單位:元/千克)滿足關(guān)系式y(tǒng)=$\frac{a}{x-3}$+10(x-6)2,其中3<x<6,a為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品12千克.
(Ⅰ)求a的值;
(Ⅱ)若該商品的成品為3元/千克,試確定銷售價(jià)格x的值,使商場每日銷售該商品所獲得的利潤最大,并求出此時(shí)的最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=m(x-2m)(x+m+3),g(x)=3x-5,
(1)已知集合A={x|m(x-2m)(x+m+3)≤0},B={y|y=g(x),x∈[0,log37]},若命題p:x∈A,命題q:x∈B且p是q的充要條件,求實(shí)數(shù)m的值;
(2)若同時(shí)滿足條件:①?x∈[1,+∞),f(x)<0;②?x∈(-∞,-4),f(x)•g(x)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=ax-(k-1)a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求實(shí)數(shù)k的值.
(2)若f(1)<0,試判斷并證明函數(shù)f(x)的單調(diào)性;
(3)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x)在區(qū)間[1,∞)上的最小值為-2,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案