精英家教網 > 高中數學 > 題目詳情

【題目】關于函數.有下列命題:

①對,恒有成立.

,使得成立.

③“若,則有.”的否命題.

④“若,則有.”的逆否命題.

其中,真命題有_____________.(只需填序號)

【答案】①②③

【解析】

,可判定①是真命題;令,得到,可判定②是真命題;根據二次函數的性質和四種命題的等價關系,可判定③是真命題,④是假命題.

由題意,設,所以,即對,恒有成立,所以①是真命題;

,可得,此時,即,使得成立,所以②是真命題;

因為當時,函數單調遞減,所以,

時,函數單調遞減,所以

所以命題“若,則有”是真命題,所以④是假命題;

又由命題“若,則有”與命題“若,則有”互為逆否關系,所以命題“若,則有”是真命題,所以③是真命題,

綜上可得,①②③是真命題.

故答案為:①②③.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某市為了了解民眾對開展創(chuàng)建文明城市工作以來的滿意度,隨機調查了40名群眾,并將他們隨機分成,兩組,每組20人,組群眾給第一階段的創(chuàng)文工作評分,組群眾給第二階段的創(chuàng)文工作評分,根據兩組群眾的評分繪制了如圖所示的莖葉圖.

(Ⅰ)根據莖葉圖比較群眾對兩個階段的創(chuàng)文工作滿意度評分的平均值和集中程度(不要求計算出具體值,給出結論即可);

(Ⅱ)完成下面的列聯表,并通過計算判斷是否有的把握認為民眾對兩個階段創(chuàng)文工作的滿意度存在差異?

低于70分

不低于70分

合計

第一階段

第二階段

合計

參考公式:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】當前,以“立德樹人”為目標的課程改革正在有序推進.高中聯招對初三畢業(yè)學生進行體育測試,是激發(fā)學生、家長和學校積極開展體育活動,保證學生健康成長的有效措施.程度2019年初中畢業(yè)生升學體育考試規(guī)定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20分.某學校在初三上期開始時要掌握全年級學生每分鐘跳繩的情況,隨機抽取了100名學生進行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:

每分鐘跳繩個數

得分

17

18

19

20

(Ⅰ)現從樣本的100名學生中,任意選取2人,求兩人得分之和不大于35分的概率;;

(Ⅱ)若該校初三年級所有學生的跳繩個數服從正態(tài)分布,用樣本數據的平均值和方差估計總體的期望和方差,已知樣本方差(各組數據用中點值代替).根據往年經驗,該校初三年級學生經過一年的訓練,正式測試時每人每分鐘跳繩個數都有明顯進步,假設今年正式測試時每人每分鐘跳繩個數比初三上學期開始時個數增加10個,現利用所得正態(tài)分布模型:

預計全年級恰有2000名學生,正式測試每分鐘跳182個以上的人數;(結果四舍五入到整數)

若在全年級所有學生中任意選取3人,記正式測試時每分鐘跳195以上的人數為ξ,求隨機變量的分布列和期望.

附:若隨機變量服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義:圓心到直線的距離與圓的半徑之比稱為直線關于圓的距離比”.

(1)設圓求過點P的直線關于圓的距離比的直線方程;

2)若圓軸相切于點A且直線關于圓C的距離比求出圓C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC的內角A,BC的對邊分別為a,bc,且(b+ctanC=﹣ctanA

1)求A

2)若b,c2,點DBC邊上,且ADBD,求AD的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校實行選科走班制度,張毅同學的選擇是地理、生物、政治這三科,且生物在層班級.該校周一上午選科走班的課程安排如下表所示,張毅選擇三個科目的課各上一節(jié),另外一節(jié)上自習,則他不同的選課方法的種數為( )

第一節(jié)

第二節(jié)

第三節(jié)

第四節(jié)

地理1班

化學層3班

地理2班

化學層4班

生物層1班

化學層2班

生物層2班

歷史層1班

物理層1班

生物層3班

物理層2班

生物層4班

物理層2班

生物層1班

物理層1班

物理層4班

政治1班

物理A層3班

政治2班

政治3班

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左頂點為,兩個焦點與短軸一個頂點構成等腰直角三角形,過點且與x軸不重合的直線l與橢圓交于M,N不同的兩點.

(Ⅰ)求橢圓P的方程;

(Ⅱ)當AM與MN垂直時,求AM的長;

(Ⅲ)若過點P且平行于AM的直線交直線于點Q,求證:直線NQ恒過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,直線)與橢圓交于,兩點(點軸的上方).

1)若,求的面積;

2)是否存在實數使得以線段為直徑的圓恰好經過坐標原點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.證明:

1存在唯一的極值點;

2有且僅有兩個實根,且兩個實根互為倒數.

查看答案和解析>>

同步練習冊答案