10.已知兩點A(-3,0),B(3,0),動點M滿足|MA|-|MB|=4,則動點M的軌跡是( 。
A.橢圓B.雙曲線C.雙曲線的一支D.拋物線

分析 利用雙曲線定義求解.

解答 解:∵兩點A(-3,0),B(3,0),
∴|AB|=6,
∵動點M滿足|MA|-|MB|=4<|AB|=6,
∴動點M的軌跡是雙曲線的一支.
故選:C.

點評 本題考查動點的軌跡方程的求法,是基礎題,解題時要認真審題,注意雙曲線定義的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.直線l將圓x2+y2-2x-4y=0平分,且與直線x+2y=0垂直,則直線l的方程為y=2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.南沙群島自古以來都是中國領土,南沙海域有A、B兩個島礁相距100海里,從A島礁望C島礁和B島礁成60°的視角,從B島礁望C島礁和A島礁成75°的視角,我國蘭州號軍艦航在A島礁處時候B島礁處指揮部的命令,前往C島礁處驅(qū)趕某國入侵軍艦,則我軍艦此時離C島礁距離是(  )
A.100($\sqrt{3}$+1)海里B.50($\sqrt{3}+1$)海里C.50$\sqrt{3}$海里D.50$\sqrt{6}$海里

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在測量某物體的重量時,得到如下數(shù)據(jù):a1,a2,…a9,其中a1≤a2≤…≤a9,若用a表示該物體重量的估計值,使a與每一個數(shù)據(jù)差的平方和最小,則a等于$\frac{{{a_1}+{a_2}+…+{a_9}}}{9}$;若用b表示該物體重量的估計值,使b與每一個數(shù)據(jù)差的絕對值的和最小,則b等于a5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.給出下列五個命題:
①函數(shù)$y=2sin(2x-\frac{π}{3})$的一條對稱軸是x=$\frac{5π}{12}$;
②函數(shù)y=tanx的圖象關于點($\frac{π}{2}$,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若$sin(2{x_1}-\frac{π}{4})=sin(2{x_2}-\frac{π}{4})$,則x1-x2=kπ,其中k∈Z;
⑤函數(shù)f(x)=sinx+2|sinx|,x∈[0,2π]的圖象與直線y=k有且僅有兩個不同的交點,則k的取值范圍為(1,3).
以上五個命題中正確的有①②(填寫所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知圓C經(jīng)過兩點A((-1,0)和B(1,2),且圓心在x軸上,
(1)求圓C的方程
(2)試直接寫出經(jīng)過點M(-1,-2),并且與圓C相切的直線l的方程(不用寫出過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.雙曲線x2-4y2=4的漸近線方程為( 。
A.$y=±\frac{1}{2}x$B.y=±2xC.$y=±\frac{1}{4}x$D.$y=±\frac{{\sqrt{5}}}{2}x$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左右焦點分別為F1,F(xiàn)2,一條垂直于x軸的直線交雙曲線的右支于M,N兩點,且MF1⊥MF2,△F1MN為等邊三角形,則雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.1+$\sqrt{3}$C.$\sqrt{3}$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知cos(α-$\frac{π}{4}$)=$\frac{3}{5}$,α∈(0,π),則s$\frac{sin2α-2si{n}^{2}α}{1-tanα}$=-$\frac{7}{25}$,cos2α=-$\frac{24}{25}$.

查看答案和解析>>

同步練習冊答案