如圖,,為圓柱的母線,是底面圓的直徑,,分別是,的中點(diǎn),
(1)證明:;
(2)證明:;
(3)假設(shè)這是個(gè)大容器,有條體積可以忽略不計(jì)的小魚能在容器的任意地方游弋,如果魚游到四棱錐 內(nèi)會(huì)有被捕的危險(xiǎn),求魚被捕的概率.

(1)見(jiàn)解析   (2)見(jiàn)解析     (3)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為8,側(cè)棱長(zhǎng)為6,D為AC中點(diǎn)。

(1)求證:直線AB1∥平面C1DB;
(2)求異面直線AB1與BC1所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在正方體中,,,,,分別是棱,,
,,的中點(diǎn).求證:
(1)直線∥平面;
(2)直線⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐的底面是平行四邊形,,設(shè)中點(diǎn),點(diǎn)在線段上且
(1)求證:平面;
(2)設(shè)二面角的大小為,若,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。
(1)請(qǐng)?jiān)诰段CE上找到一點(diǎn)F,使得直線BF∥平面ACD,并證明;
(2)求平面BCE與平面ACD所成銳二面角的大;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
如圖1,直角梯形中, 四邊形是正方形,,.將正方形沿折起,得到如圖2所示的多面體,其中面,中點(diǎn).
(1) 證明:∥平面
(2) 求三棱錐的體積.
     
圖1                     圖2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB= 60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=" CD=" CF.
(1)求證:BD⊥平面AED;
(2)求二面角F—BD—C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

正三棱柱中,,D、E分別是、的中點(diǎn),

(1)求證:面⊥面BCD;
(2)求直線與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知為平行四邊形,,,點(diǎn)上,,,相交于.現(xiàn)將四邊形沿折起,使點(diǎn)在平面上的射影恰在直線上.
(1)求證:平面;
(2)求折后直線與平面所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案