分析 求出拋物線的焦點,根據(jù)拋物線y=$\frac{1}{16}$x2的焦點與雙曲線$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{m}$=1的上焦點重合,建立方程,即可求出m.
解答 解:拋物線y=$\frac{1}{16}$x2的焦點坐標為(0,4),
∵拋物線y=$\frac{1}{16}$x2的焦點與雙曲線$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{m}$=1的上焦點重合,
∴3+m=16,
∴m=13.
故答案為:13.
點評 本題考查雙曲線的方程和性質(zhì),主要是焦點的求法,同時考查拋物線的焦點坐標,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=±\sqrt{3}x$ | B. | $y=±\frac{{\sqrt{3}}}{3}x$ | C. | y=±4x | D. | y=±$\frac{1}{4}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | 0 | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2.48}$米 | B. | $\sqrt{2.36}$米 | C. | $\sqrt{2.43}$米 | D. | $\sqrt{2.52}$米 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com