11.已知三棱錐A-BCD的側(cè)棱長和底面邊長都是3,求下列向量的數(shù)量積:
(1)$\overrightarrow{AD}•\overrightarrow{DB}$;
(2)$\overrightarrow{AD}•\overrightarrow{BC}$.

分析 (1)求出兩個斜率的夾角,然后求解數(shù)量積.
(2)判斷兩個向量的位置關(guān)系,然后求解數(shù)量積即可.

解答 解:(1)$\overrightarrow{AD}•\overrightarrow{DB}$=$\overrightarrow{|AD}|•|\overrightarrow{DB}|$cos120°=$-\frac{9}{2}$.
(2)三棱錐A-BCD的側(cè)棱長和底面邊長都是3,幾何體是正三棱錐,$\overrightarrow{AD}⊥\overrightarrow{BC}$,
可得$\overrightarrow{AD}•\overrightarrow{BC}=0$.

點評 本題考查空間向量與平面向量的轉(zhuǎn)化,斜率的數(shù)量積的運(yùn)算,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示,正方體ABCD-A′B′C′D′的棱長為1,E、F分別是棱AA′,CC′的中點,過直線E,F(xiàn)的平面分別與棱BB′、DD′交于M、N,設(shè)BM=x,x∈(0,1),給出以下四個命題:
①四邊形MENF為平行四邊形;
②若四邊形MENF面積s=f(x),x∈(0,1),則f(x)有最小值;
③若四棱錐A-MENF的體積V=p(x),x∈(0,1),則p(x)為常函數(shù);
④若多面體ABCD-MENF的體積V=h(x),x∈($\frac{1}{2}$,1),則h(x)為單調(diào)函數(shù);
其中假命題為 ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列條件使M與A,B,C一定共面的是( 。
A.$\overrightarrow{OM}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$+$\overrightarrow{OC}$B.$\overrightarrow{OM}$+$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$
C.$\overrightarrow{OM}$=$\frac{1}{5}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$D.$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=$\overrightarrow{0}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lg($\sqrt{{x}^{2}+2}$+x)-lg$\sqrt{2}$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并用定義證明函數(shù)f(x)的單調(diào)性;
(3)若f(k•3x)+f(3x-9x-2)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,F(xiàn)1F2為橢圓C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1的左、右焦點,點P為橢圓C上一點,延長PF1、,PF2分別交橢圓C于A,B.若$\overrightarrow{P{F}_{1}}$=2$\overrightarrow{{F}_{1}A}$,$\overrightarrow{P{F}_{2}}$=$λ\overrightarrow{{F}_{2}B}$,則λ=(  )
A.1B.$\sqrt{2}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點A(1,2),B(3,1),則過AB中點垂直于直線x+y+1=0的方程是2x-2y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,直線l經(jīng)過第二、第三、第四象限,l的傾斜角為α,斜率為k,則( 。
A.ksin(π+α)>0B.kcos(π-α)>0C.ksinα≤0D.kcosα≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知四棱錐S-ABCD,底面ABCD為菱形,SA⊥平面ABCD,∠ADC=60°,E,F(xiàn)分別是SC,BC的中點.
(Ⅰ)證明:SD⊥AF;
(Ⅱ)若AB=2,SA=4,求二面角F-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一個水平放置的平面圖形的斜二測直觀圖是一個底角為45°,腰和上底均為1的等腰梯形,則這個平面圖形的面積為(  )
A.$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$B.1+$\frac{\sqrt{2}}{2}$C.1+$\sqrt{2}$D.2+$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案