A. | ① | B. | ② | C. | ③ | D. | ④ |
分析 根據(jù)已知中正方體ABCD-A′B′C′D′的棱長為1,E、F分別是棱AA′,CC′的中點,過直線E,F(xiàn)的平面分別與棱BB′、DD′交于M、N,設BM=x,x∈(0,1),逐一分析四個結(jié)論的真假,可得答案.
解答 解:①∵平面ADD′A′∥平面BCC′B′,
∴EN∥MF,
同理:FN∥EM,
∴四邊形EMFN為平行四邊形,故正確;
②MENF的面積s=f(x)=$\frac{1}{2}$(EF×MN),
當M為BB′的中點時,即x=$\frac{1}{2}$時,MN最短,此時面積最。收_;
③連結(jié)AF,AM,AN,則四棱錐則分割為兩個小三棱錐,
它們以AEF為底,以M,N分別為頂點的兩個小棱錐.
因為三角形AEF的面積是個常數(shù).
M,N到平面AEF的距離和是個常數(shù),
所以四棱錐C'-MENF的體積V為常數(shù)函數(shù),故正確.
④多面體ABCD-MENF的體積V=h(x)=$\frac{1}{2}$VABCD-A′B′C′D′=$\frac{1}{2}$為常數(shù)函數(shù),故錯誤;
故選:D.
點評 本題以命題的真假判斷與應用為載體,考查了正方體的幾何特征,函數(shù)的最值,函數(shù)的單調(diào)性,棱錐的體積等知識點,難度中檔.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
零件評分結(jié)果所在區(qū)間 | (40,50] | (50,60] |
每個零件個數(shù)被修復的概率 | $\frac{1}{3}$ | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{2}{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com