17.已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=2x+1
(1)求f(x)與g(x)的解析式;
(2)若定義在實(shí)數(shù)集R上的以2為最小正周期的周期函數(shù)φ(x),當(dāng)-1≤x≤1時(shí),φ(x)=f(x),試求φ(x)在閉區(qū)間[2015,2016]上的表達(dá)式,并證明φ(x)在閉區(qū)間[2015,2016]上單調(diào)遞減;
(3)設(shè)h(x)=x2+2mx+m2-m+1(其中m為常數(shù)),若h(g(x))≥m2-m-1對(duì)于x∈[1,2]恒成立,求m的取值范圍.

分析 (1)根據(jù)函數(shù)的奇偶性可得f(-x)+g(-x)=2-x+1,通過(guò)聯(lián)立求解可得出函數(shù)的解析式;
(2)φ(x)是R上以2為正周期的周期函數(shù),可得2016也為函數(shù)的周期,x-2016∈[-1,0],可得$φ(x)=φ(x-2016)=f(x-2016)={2^{x-2016}}+\frac{1}{{{2^{x-2016}}}}$,利用定義法判斷函數(shù)的單調(diào)性即可;
(3)利用換元法t=g(x)在x∈[1,2]單調(diào)遞增,得出t的范圍$\frac{3}{2}≤t≤\frac{15}{4}$,不等式可整理為$m≥-\frac{{{t^2}+2}}{2t}$對(duì)于$t∈[{\frac{3}{2},\frac{15}{4}}]$恒成立,只需求出右式的最大值即可.

解答 解:(1)f(x)+g(x)=2x+1①,
因?yàn)閒(x)是偶函數(shù),g(x)是奇函數(shù)
所以有f(-x)+g(-x)=2-x+1,即f(x)-g(x)=2-x+1
∵f(x),g(x)定義在實(shí)數(shù)集R上,
由①和②解得,$f(x)=\frac{{{2^{x+1}}+{2^{-x+1}}}}{2}={2^x}+\frac{1}{2^x}$,$g(x)=\frac{{{2^{x+1}}-{2^{-x+1}}}}{2}={2^x}-\frac{1}{2^x}$.
(2)φ(x)是R上以2為正周期的周期函數(shù),所以當(dāng)x∈[2015,2016]時(shí),x-2016∈[-1,0],$φ(x)=φ(x-2016)=f(x-2016)={2^{x-2016}}+\frac{1}{{{2^{x-2016}}}}$,即φ(x)在閉區(qū)間[2015,2016]上的表達(dá)式為$φ(x)={2^{x-2016}}+\frac{1}{{{2^{x-2016}}}}$.
下面證明φ(x)在閉區(qū)間[2015,2016]上遞減:$φ(x)={2^{x-2016}}+\frac{1}{{{2^{x-2016}}}}≥2$,當(dāng)且僅當(dāng)2x-2016=1,即x=2016時(shí)等號(hào)成立.
對(duì)于任意2015≤x1<x2≤2016,
$f({x_1})-f({x_2})={2^{{x_1}-2016}}+\frac{1}{{{2^{{x_1}-2016}}}}-{2^{{x_2}-2016}}-\frac{1}{{{2^{{x_2}-2016}}}}=({2^{{x_1}-{x_2}}}-1)({2^{{x_2}-2016}}-\frac{1}{{{2^{{x_1}-2016}}}})$,
因?yàn)?015≤x1<x2≤2016,所以${2^{{x_1}-{x_2}}}<1,{2^{{x_1}-{x_2}}}-1<0$,${2^{{x_2}-2016}}≤{2^0}=1$,${2^{{x_1}-2016}}<{2^0}=1$,$\frac{1}{{{2^{{x_1}-2016}}}}>1$,${2^{{x_2}-2016}}-{2^{2016-{x_1}}}<0$,
從而φ(x1)-φ(x2)>0,
所以當(dāng)2015≤x1<x2≤2016時(shí),φ(x)遞減.
(3)∵t=g(x)在x∈[1,2]單調(diào)遞增,∴$\frac{3}{2}≤t≤\frac{15}{4}$.
∴h(t)=t2+2mt+m2-m+1≥m2-m-1對(duì)于$t∈[{\frac{3}{2},\frac{15}{4}}]$恒成立,
∴$m≥-\frac{{{t^2}+2}}{2t}$對(duì)于$t∈[{\frac{3}{2},\frac{15}{4}}]$恒成立,
令$k(t)=-\frac{{{t^2}+2}}{2t}$,則$\frac{{{t^2}+2}}{2t}=\frac{t}{2}+\frac{1}{t}≥\sqrt{2}$,當(dāng)且僅當(dāng)$t=\sqrt{2}$時(shí),等號(hào)成立,且$\sqrt{2}<\frac{3}{2}$所以在區(qū)間$t∈[{\frac{3}{2},\frac{15}{4}}]$上$k(t)=-\frac{{{t^2}+2}}{2t}$單調(diào)遞減,
∴$k{(t)_{max}}=k(\frac{3}{2})=-\frac{17}{12}$,
∴$m≥-\frac{17}{12}$為m的取值范圍.

點(diǎn)評(píng) 本題綜合性強(qiáng),考查了函數(shù)的奇偶性,周期性,單調(diào)性和恒成立問(wèn)題的轉(zhuǎn)化,換元法的應(yīng)用.屬于難度較大的題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下面是關(guān)于函數(shù)y=ax2+bx+c,a≠0,x∈M,M為非空集合,關(guān)于最值的論述:
(1)當(dāng)a>0時(shí),函數(shù)一定有最小值為$\frac{{4ac-{b^2}}}{4a}$;
(2)y是否有最大值和最小值,關(guān)鍵取決于x的范圍,有可能y既有最大值,也有最小值,其值不一定是$\frac{{4ac-{b^2}}}{4a}$;
(3)求y的最大值或最小值時(shí),利用公式:$x=-\frac{2a}$求出對(duì)稱(chēng)軸,再畫(huà)草圖,根據(jù)x的范圍截取圖象,最后根據(jù)圖象確定取最大值或最小值時(shí)對(duì)應(yīng)的x值,然后通過(guò)代入求得最值.
以上結(jié)論中正確的個(gè)數(shù)有( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.對(duì)于任意實(shí)數(shù)a、b,(a-b)2≥kab均成立,則實(shí)數(shù)k的取值范圍是( 。
A.{-4,0}B.[-4,0]C.(-∞,0]D.(-∞,-4]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知復(fù)數(shù)z滿足z+|z|=2+8i,其中i為虛數(shù)單位,則|z|=17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.組合數(shù)$C_n^r\;(n>r≥1,n,r∈N)$恒等于( 。
A.$\frac{r+1}{n+1}C_{n-1}^{r-1}$B.$\frac{n+1}{r+1}C_{n-1}^{r-1}$C.$\frac{r}{n}C_{n-1}^{r-1}$D.$\frac{n}{r}C_{n-1}^{r-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在產(chǎn)品檢驗(yàn)時(shí),常采用抽樣檢查的方法.現(xiàn)在從100件產(chǎn)品(已知其中有3件不合格品)中任意抽出4件檢查,恰好有2件是不合格品的抽法有13968種.(用數(shù)值作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x0,y0)、直線l:ax+by+c=0,我們稱(chēng)$δ=\frac{{a{x_0}+b{y_0}+c}}{{\sqrt{{a^2}+{b^2}}}}$為點(diǎn)P(x0,y0)到直線l:ax+by+c=0的方向距離.
(1)設(shè)橢圓$\frac{x^2}{4}+{y^2}=1$上的任意一點(diǎn)P(x,y)到直線l1:x-2y=0,l2:x+2y=0的方向距離分別為δ1、δ2,求δ1δ2的取值范圍.
(2)設(shè)點(diǎn)E(-t,0)、F(t,0)到直線l:xcosα+2ysinα-2=0的方向距離分別為η1、η2,試問(wèn)是否存在實(shí)數(shù)t,對(duì)任意的α都有η1η2=1成立?若存在,求出t的值;不存在,說(shuō)明理由.
(3)已知直線l:mx-y+n=0和橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),設(shè)橢圓E的兩個(gè)焦點(diǎn)F1,F(xiàn)2到直線l的方向距離分別為λ1、λ2滿足${λ_1}{λ_2}>{b^2}$,且直線l與x軸的交點(diǎn)為A、與y軸的交點(diǎn)為B,試比較|AB|的長(zhǎng)與a+b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,AB為定圓O的直徑,點(diǎn)P為半圓AB上的動(dòng)點(diǎn).過(guò)點(diǎn)P作AB的垂線,垂足為Q,過(guò)Q作OP的垂線,垂足為M.記弧AP的長(zhǎng)為x,線段QM的長(zhǎng)為y,則函數(shù)y=f(x)的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.將長(zhǎng)AB=4π,寬BC=π的矩形ABCD,卷成圓柱的側(cè)面,則所得圓柱的體積最大值為4π2

查看答案和解析>>

同步練習(xí)冊(cè)答案