6.如圖,AB為定圓O的直徑,點(diǎn)P為半圓AB上的動(dòng)點(diǎn).過點(diǎn)P作AB的垂線,垂足為Q,過Q作OP的垂線,垂足為M.記弧AP的長為x,線段QM的長為y,則函數(shù)y=f(x)的大致圖象是( 。
A.B.C.D.

分析 在直角三角形OQP中,求出OQ,注意長度、距離為正,再根據(jù)直角三角形的銳角三角函數(shù)的定義即可得到f(x)的表達(dá)式,然后化簡,分析周期和最值,結(jié)合圖象正確選擇.

解答 解:在直角三角形OQP中,設(shè)OP=1,
∵弧AP的長為x,則∠POQ=x,OQ=|cosx|,
∴點(diǎn)Q到直線OP的距離即QM=y,
∴y=f(x)=OQ|sinx|=|cosx|•|sinx|=$\frac{1}{2}$|sin2x|,
其周期為T=$\frac{π}{2}$,最大值為$\frac{1}{2}$,最小值為0,
故選A.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象與性質(zhì),正確表示函數(shù)的表達(dá)式是解題的關(guān)鍵,同時(shí)考查二倍角公式的運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖的程序圖的算法思路中是一種古老而有效的算法--輾轉(zhuǎn)相除法,執(zhí)行改程序框圖,若輸入的m,n的值分別為30,42,則輸出的m=( 。
A.0B.2C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=2x+1
(1)求f(x)與g(x)的解析式;
(2)若定義在實(shí)數(shù)集R上的以2為最小正周期的周期函數(shù)φ(x),當(dāng)-1≤x≤1時(shí),φ(x)=f(x),試求φ(x)在閉區(qū)間[2015,2016]上的表達(dá)式,并證明φ(x)在閉區(qū)間[2015,2016]上單調(diào)遞減;
(3)設(shè)h(x)=x2+2mx+m2-m+1(其中m為常數(shù)),若h(g(x))≥m2-m-1對(duì)于x∈[1,2]恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知拋物線y2=2px(p>0)與雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$有相同的焦點(diǎn)F,點(diǎn)A是兩曲線的一個(gè)交點(diǎn),且AF⊥x軸,若l為雙曲線一、三象限的一條漸近線,則l的傾斜角所在的區(qū)間可能是( 。
A.$({0,\frac{π}{6}})$B.$({\frac{π}{6},\frac{π}{4}})$C.$({\frac{π}{4},\frac{π}{3}})$D.$({\frac{π}{3},\frac{π}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知點(diǎn)P、Q分別為函數(shù)f(x)=x2+1(x≥0)和$g(x)=\sqrt{x-1}$圖象上的點(diǎn),則點(diǎn)P和Q兩點(diǎn)距離的最小值為$\frac{{3\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a>0,b>0.若$\sqrt{3}$是3a與3b的等比中項(xiàng),則ab的最大值為( 。
A.8B.4C.1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一個(gè)空間幾何體的三視圖如圖所示,其正視圖、側(cè)視  圖、俯視圖均為等腰直角三角形,且直角邊長都為1,則它的外接球的表面積是( 。
A.B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若直線l⊥平面α,直線a?α,則l與a的位置關(guān)系是垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知全集U=R,集合$A=\left\{{\left.{x\left|{\frac{x+1}{x-2}≤0}\right.}\right\}}\right.$,則集合∁UA={x|x<-1或x≥2}.

查看答案和解析>>

同步練習(xí)冊(cè)答案