8.用反余弦函數(shù)值的形式表示各式中的x:
(1)cosx=$\frac{3}{4}$,x∈[0,π];
(2)cosx=-$\frac{\sqrt{5}}{5}$,x∈[0,π];
(3)cosx=-$\frac{\sqrt{5}}{5}$,x∈[-π,0];
(4)cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,0];
(5)cosx=$\frac{3}{4}$,x∈[$\frac{3π}{2}$,2π];
(6)cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(7)cosx=-$\frac{\sqrt{5}}{5}$,x∈[$\frac{1}{2}$π,$\frac{3}{2}$π].

分析 利用余弦函數(shù)的圖象,反余弦函數(shù)的定義和性質(zhì),求得各題中x的值.

解答 解:(1)∵cosx=$\frac{3}{4}$,x∈[0,π],∴x=arccos$\frac{3}{4}$;
(2)∵cosx=-$\frac{\sqrt{5}}{5}$,x∈[0,π],∴x=arccos(-$\frac{\sqrt{5}}{5}$)=π-arccos $\frac{\sqrt{5}}{5}$;
(3)∵cosx=-$\frac{\sqrt{5}}{5}$,x∈[-π,0],∴x=-(π-arccos$\frac{\sqrt{5}}{5}$)=arccos$\frac{\sqrt{5}}{5}$-π;
(4)∵cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,0];∴x=-arccos$\frac{3}{4}$;
(5)∵cosx=$\frac{3}{4}$,x∈[$\frac{3π}{2}$,2π]; x=2π-arccos$\frac{3}{4}$;
(6)∵cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];∴x=±arccos$\frac{3}{4}$;
(7)∵cosx=-$\frac{\sqrt{5}}{5}$,x∈[$\frac{1}{2}$π,$\frac{3}{2}$π],∴x=π-arccos$\frac{\sqrt{5}}{5}$=π+arccos$\frac{\sqrt{5}}{5}$.

點評 本題主要考查余弦函數(shù)的圖象,反余弦函數(shù)的定義和性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)y=$\left\{\begin{array}{l}{logx,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,輸入自變量x的值,輸出對應(yīng)函數(shù)值的算法中所用到的基本邏輯結(jié)構(gòu)是( 。
A.順序結(jié)構(gòu)B.順序結(jié)構(gòu)、選擇結(jié)構(gòu)
C.條件結(jié)構(gòu)D.順序結(jié)構(gòu)、選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法中正確的是( 。
A.若|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$B.若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$
C.若$\overrightarrow{a}$=$\overrightarrow$,則$\overrightarrow{a}$∥$\overrightarrow$D.若$\overrightarrow{a}$≠$\overrightarrow$,則$\overrightarrow{a}$與$\overrightarrow$不是共線向量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在二項式(9x-$\frac{1}{{3\root{3}{x}}}}$)n的展開式中,偶數(shù)項的二項式系數(shù)之和為256,則展開式中x的系數(shù)為84.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若某程序框圖如圖所示,則輸出的n的值是(  )
 
A.43B.44C.45D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.安排甲、乙、丙、丁四人參加周一至周六的公益活動,每天只需一人參加,其中甲參加三天活動,乙、丙、丁每人參加一天,那么甲不能連續(xù)三天參加活動的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若0<x<1,a=$\sqrt{\frac{sinx}{x}}$,b=$\frac{sinx}{x}$,c=$\frac{sin\sqrt{x}}{\sqrt{x}}$,則a,b,c的大小關(guān)系為a>b>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)數(shù)列{an}的前n項和為Sn=n2-8n.
(1)求數(shù)列{|an|}的通項公式;
(2)若Hn=|a1|+|a2|+…+|an|,求Hn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a>b,c>d>0,則下列不等式成立的是( 。
A.a+d>b+cB.a-d>b-cC.ac>bdD.$\frac{a}{c}$<$\fracbhbn95q$

查看答案和解析>>

同步練習(xí)冊答案