16.在二項式(9x-$\frac{1}{{3\root{3}{x}}}}$)n的展開式中,偶數(shù)項的二項式系數(shù)之和為256,則展開式中x的系數(shù)為84.

分析 根據(jù)二項式展開式中,偶數(shù)項與奇數(shù)項的二項式系數(shù)之和相等,求出n的值;再利用二項展開式的通項公式,即可求出展開式中x的系數(shù).

解答 解:二項式展開式中,偶數(shù)項與奇數(shù)項的二項式系數(shù)之和相等,
所以2n-1=256,解得n=9;
所以二項式(9x-$\frac{1}{{3\root{3}{x}}}}$)9的展開式中,通項公式為
Tr+1=${C}_{9}^{r}$•(9x)9-r•${(-\frac{1}{3\root{3}{x}})}^{r}$=${C}_{9}^{r}$•99-r•${(-\frac{1}{3})}^{r}$•${x}^{9-\frac{4γ}{3}}$;
令9-$\frac{4r}{3}$=1,解得r=6;
所以展開式中x的系數(shù)為
${C}_{9}^{6}$•93•${(-\frac{1}{3})}^{6}$=84.
故答案為:84.

點評 本題考查了二項式展開式的二項式系數(shù)的應(yīng)用問題,也考查了二項式展開式的通項公式應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.袋中有6個紅球,4個白球,從中任取1球,記住顏色后再放回,連續(xù)摸取4次,設(shè)X為取得紅球的次數(shù),則X的方差D(X)的值為(  )
A.$\frac{12}{5}$B.$\frac{24}{25}$C.$\frac{8}{5}$D.$\frac{2\sqrt{6}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示的正數(shù)數(shù)陣中,第一橫行是公差為d的等差數(shù)列,各列均是公比為q等比數(shù)列,已知a1,1=1,a1,4=7,a4,1=$\frac{1}{8}$,則下列結(jié)論中不正確的是(  )
A.d+2q=a1,2B.a2,1+a2,3+a2,5+…+a2,21=$\frac{441}{2}$
C.每一橫行都是等差數(shù)列D.ai,j=(2j-1)+21-i(i,j均為正整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{2}$x2+ax-2xlnx(a∈R).
(1)當(dāng)a=5時,判斷g(x)=f(x)-$\frac{1}{2}$x2在[1,e]上的單調(diào)性并加以證明;
(2)當(dāng)a=4-e時,試探討函數(shù)f(x)在(0,+∞)上是否存在極小值?,若存在,求出極小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名學(xué)生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進(jìn)行調(diào)查,將收集到的數(shù)據(jù)分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)六組,并作出頻率分布直方圖(如圖).將日均課外體育鍛煉時間不低于40分鐘的學(xué)生評價為“課外體育達(dá)標(biāo)”.
(1)請根據(jù)直方圖中的數(shù)據(jù)填寫下面的2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo)課外體育達(dá)標(biāo)合計
603090
9020110
合計15050200
(2)現(xiàn)按照“課外體育達(dá)標(biāo)”與“課外體育不達(dá)標(biāo)”進(jìn)行分層抽樣,抽取12人,再從這12名學(xué)生中隨機抽取3人參加體育知識問卷調(diào)查,記“課外體育達(dá)標(biāo)”的人數(shù)為ξ,求ξ得分布列和數(shù)學(xué)期望.
附參考公式與數(shù)據(jù):K2=$\frac{n({ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.100.050.0100.0050.001
k02.7063.8416.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,平面四邊形ABCD中,∠B=∠D=90°,AC=2AB=4$\sqrt{3}$,DA=DC,F(xiàn)是AC上一點,且AF=$\frac{1}{3}$AC.將該四邊形沿AC折起,使點D在平面ABC的射影E恰在BC上,此時DE=2$\sqrt{2}$.
(Ⅰ)證明:AB⊥平面BCD;
(Ⅱ)證明:AB∥平面DEF;
(Ⅲ)求三棱錐A-BDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.用反余弦函數(shù)值的形式表示各式中的x:
(1)cosx=$\frac{3}{4}$,x∈[0,π];
(2)cosx=-$\frac{\sqrt{5}}{5}$,x∈[0,π];
(3)cosx=-$\frac{\sqrt{5}}{5}$,x∈[-π,0];
(4)cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,0];
(5)cosx=$\frac{3}{4}$,x∈[$\frac{3π}{2}$,2π];
(6)cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(7)cosx=-$\frac{\sqrt{5}}{5}$,x∈[$\frac{1}{2}$π,$\frac{3}{2}$π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若將函數(shù)f(x)=(x-1)7表示為f(x)=a0+a1(x+1)+a2(x+1)2+…+a7(x+1)7,其中(ai∈R,i=0,1,2,…,7)為實數(shù),則a4等于-280.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分別是棱AD,AA1的中點.
(1)設(shè)F是棱AB的中點,證明:直線EE1∥平面FCC1
(2)證明:平面D1AC⊥平面BB1C1C;
(3)求點D到平面D1AC的距離.

查看答案和解析>>

同步練習(xí)冊答案