分析 作出線段在空間坐標(biāo)系中的投影和直觀圖,利用勾股定理求出m,n.則a的最小值為n.
解答 解:作出空間坐標(biāo)系如圖,設(shè)幾何體的棱為P1P2,作出它在平面xoy上的投影AB,
過A作AC∥y軸,過B作BC∥x軸,交點為C,則AC=2$\sqrt{3}$,BC=m,AB=n.
由勾股定理得(2$\sqrt{3}$)2+m2=n2,又∵m+n=6,∴n=4,m=2.
過P1作P1D⊥P2B,則P1D=AB=4.P2D為P1P2的豎坐標(biāo)之差.
∴P1P2=$\sqrt{{P}_{1}{D}^{2}+{P}_{2}{D}^{2}}$=$\sqrt{16+{P}_{2}{D}^{2}}$.
∴當(dāng)P2D=0時,P1P2取得最小值4.
故答案為:4.
點評 本題考查了物體的三視圖,找到m,n的關(guān)系求出m,n是解題關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\frac{2x-a}{x}$ | B. | f(x)=ax | C. | f(x)=loga(ax) | D. | f(x)=x2-3ax+1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com