2.若函數(shù)f(x)=1g(x+1)-1,則f(99)=1.

分析 根據(jù)題意,將x=99代入f(x)=1g(x+1)-1中,可得f(99)=lg(99+1)-1,計算可得答案.

解答 解:根據(jù)題意,f(x)=1g(x+1)-1,
則f(99)=lg(99+1)-1=2-1=1,
即f(99)=1;
故答案為:1.

點評 本題考查函數(shù)的計算,涉及對數(shù)的運算,關(guān)鍵是掌握對數(shù)的運算性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足$\frac{3}{{a}_{n+1}}$=$\frac{3}{{a}_{n}}$+1,a1=3
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列;
(2)設(shè)bn=anan+1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.4名考生在三道選做題中任選一道進行作答,則這三道題都有人選做的概率為( 。
A.$\frac{4}{9}$B.$\frac{8}{27}$C.$\frac{2}{9}$D.$\frac{4}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C的長軸左、右頂點分別為A,B,離心率e=$\frac{\sqrt{2}}{2}$,右焦點為F,且$\overrightarrow{AF}$$•\overrightarrow{BF}$=-1.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若P是橢圓C上的一動點,點P關(guān)于坐標(biāo)原點的對稱點為Q,點P在x軸上的射影點為M,連接QM并延長交橢圓于點N.求證:∠QPN=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知$\overrightarrow{m}$=(asinx,cosx),$\overrightarrow{n}$=(sinx,bxinx),若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,滿足f($\frac{π}{6}$)=2,且f(x)的導(dǎo)函數(shù)f′(x)的圖象關(guān)于直線x=$\frac{π}{12}$對稱.
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)圖象的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)保持不變),得到函數(shù)g(x),求方程g(x)-1-$\sqrt{2}$=0在區(qū)間[0,π]上的所有根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.用定積分表示下列圖1、圖2中陰影部分的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知某幾何體的一條棱長為a,在正視圖中的投影長為2$\sqrt{3}$,在側(cè)視圖,俯視圖中投影長分別為m、n,且m+n=6,則a的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,在R上單調(diào)遞增的是( 。
A.y=x${\;}^{\frac{1}{3}}$B.y=log2xC.y=|x|D.y=0.5x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$cos(θ+\frac{π}{6})=-\frac{{\sqrt{3}}}{3}$,則$sin(\frac{π}{6}-2θ)$=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.-$\frac{1}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案