19.在△ABC中,b+c=4,∠A=60°,求△ABC周長L的最小值.

分析 使用余弦定理得出a2,利用基本不等式得出a的最小值.

解答 解:由余弦定理的a2=b2+c2-2bccosA=(b+c)2-3bc,=16-3bc.
∵bc≤($\frac{b+c}{2}$)2=4,當(dāng)且僅當(dāng)b=c時(shí)取等號,∴a2=16-3bc≥16-12=4.
∴a≥2,∴a+b+c≥6.
∴△ABC周長L的最小值是6.

點(diǎn)評 本題考查了余弦定理,基本不等式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在正方體ABCD-A1B1C1D1中,A1D的中點(diǎn)為E,BD的中點(diǎn)為F,證明:CD1∥EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C的長軸左、右頂點(diǎn)分別為A,B,離心率e=$\frac{\sqrt{2}}{2}$,右焦點(diǎn)為F,且$\overrightarrow{AF}$$•\overrightarrow{BF}$=-1.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若P是橢圓C上的一動點(diǎn),點(diǎn)P關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)為Q,點(diǎn)P在x軸上的射影點(diǎn)為M,連接QM并延長交橢圓于點(diǎn)N.求證:∠QPN=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.用定積分表示下列圖1、圖2中陰影部分的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知某幾何體的一條棱長為a,在正視圖中的投影長為2$\sqrt{3}$,在側(cè)視圖,俯視圖中投影長分別為m、n,且m+n=6,則a的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知實(shí)數(shù)函數(shù)f(x)=x2+ax+b(a,b∈R),方程f(x)=x在(0,1)上有兩個(gè)不等實(shí)根x1,x2(x1<x2
(1)求f($\frac{1}{2}$)的取值范圍;
(2)設(shè)實(shí)數(shù)λ>0,t=$\frac{{x}_{1}+λ{(lán)x}_{2}}{1+λ}$
求證:(i)x1<t<x2
(ii)x1<f(t)<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,在R上單調(diào)遞增的是(  )
A.y=x${\;}^{\frac{1}{3}}$B.y=log2xC.y=|x|D.y=0.5x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}{4^x},x≥3\\-8x,x<3.\end{array}\right.$如果f(x0)=16,那么實(shí)數(shù)x0的值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(sin$\frac{ω}{2}$x,$\frac{1}{2}$),$\overrightarrow$=(cos$\frac{ω}{2}$x,-$\frac{1}{2}$)(ω>0,x≥0),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的第n(n∈N*)個(gè)零點(diǎn)記作xn(從左至右依次計(jì)數(shù)).
(1)若ω=$\frac{1}{2}$,求x2;
(2)若函數(shù)f(x)的最小正周期為π,設(shè)g(x)=|$\overrightarrow{a}$+$\overrightarrow$|,求函數(shù)g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案