5.已知f(x)是R上的奇函數(shù),且當(dāng)x>0時,f(x)=x2(1-x),f(x)在R上的解析式_f(x)=$\left\{\begin{array}{l}{{x}^{2}(1-x),}&{x≥0}\\{-{x}^{2}(1+x),}&{x<0}\end{array}\right.$.

分析 根據(jù)函數(shù)奇偶性的性質(zhì),利用對稱關(guān)系進(jìn)行求解即可.

解答 解:∵f(x)是R上的奇函數(shù),∴f(0)=0,
當(dāng)x<0時,-x>0,
則f(-x)=(-x)2(1+x)=x2(1+x),
又f(x)是R上的奇函數(shù),
則f(-x)=x2(1+x)=-f(x),
即當(dāng)x<0時f(x)=-x2(1+x).
綜上f(x)=$\left\{\begin{array}{l}{{x}^{2}(1-x),}&{x≥0}\\{-{x}^{2}(1+x),}&{x<0}\end{array}\right.$,
故答案為:f(x)=$\left\{\begin{array}{l}{{x}^{2}(1-x),}&{x≥0}\\{-{x}^{2}(1+x),}&{x<0}\end{array}\right.$.

點(diǎn)評 本題主要考查函數(shù)解析式的求解,根據(jù)函數(shù)奇偶性的對稱性進(jìn)行轉(zhuǎn)化求解是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=cos2x+sinx(-$\frac{π}{6}$≤x≤$\frac{π}{6}$)的最大值與最小值之和為( 。
A.$\frac{3}{2}$B.2C.0D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)為奇函數(shù),且在(-∞,0)上是減函數(shù),若f(-3)=0,則xf(x)<0的解集為( 。
A.(-3,0)∪(3,+∞)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.A為三角形一內(nèi)角,若sinA+cosA=$\frac{1}{5}$,cosA-sinA=-$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.曲線y=sinx(0≤x≤π)與直線$y=\frac{1}{2}$圍成的封閉圖形的面積是$\sqrt{3}$-$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知圓C:x2+y2-2x-1=0,直線l:3x-4y+12=0,圓C上任意一點(diǎn)P到直線l的距離小于2的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=sin(2x-$\frac{π}{3}$)(x∈R)的圖象為C,以下結(jié)論正確的是①②.(寫出所有正確結(jié)論的編號)
①圖象C關(guān)于直線x=$\frac{11π}{12}$對稱;
②圖象C關(guān)于點(diǎn)($\frac{2π}{3}$,0)對稱;
③函數(shù)f(x)在區(qū)間(-$\frac{π}{12}$,$\frac{5π}{2}$)內(nèi)是增函數(shù);
④由y=sin2x的圖象向右平移$\frac{π}{3}$個單位長度可以得到圖象C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z=$\frac{2}{1+i}$,則|z|等于( 。
A.2B.$\sqrt{2}$C.2 $\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=2sin(x-$\frac{π}{3}$),x∈[-π,0]的單調(diào)增區(qū)間為[-$\frac{π}{6}$,0].

查看答案和解析>>

同步練習(xí)冊答案