A. | c,d | B. | d,e | C. | b,e | D. | c,e |
分析 由題意和極限的定義可得a=f′(x0),由極限的定義分別計算b、c、d、e可得.
解答 解:∵a=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0})}{△x}$=f′(x0),
∴b=$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=-$\underset{lim}{-△x→0}$$\frac{f[{x}_{0}+(-△x)]-f({x}_{0})}{-△x}$=-f′(x0)=-a,
∴c=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+2△x)-f({x}_{0})}{△x}$=2•$\underset{lim}{2△x→0}$$\frac{f({x}_{0}+2△x)-f({x}_{0})}{2△x}$=2f′(x0)=2a,
∴d=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{2△x}$=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0})+f({x}_{0})-f({x}_{0}-△x)}{2△x}$,
=$\frac{1}{2}$$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0})}{△x}$-$\frac{1}{2}$$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=$\frac{1}{2}$a+$\frac{1}{2}$a=a,
∴e=$\underset{lim}{x→{x}_{0}}$$\frac{f(x)-f({x}_{0})}{x-{x}_{0}}$=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0})}{△x}$=f′(x0)=a
故選:B
點評 本題考查極限的運算,涉及導數(shù)的定義和整體思想,屬基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com