14.已知函數(shù)f(x)=x+a1nx,g(x)=f(x)+$\frac{1}{2}$x2-bx.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,b≥$\frac{7}{2}$,x1,x2(x1<x2)是函數(shù)g(x)的兩個(gè)極值點(diǎn),求g(x1)-g(x2)的最小值.

分析 (1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,即可求解a的值.
(2)求出g′(x),列出求解函數(shù)的極值點(diǎn)的方程,利用韋達(dá)定理,化簡(jiǎn)g(x1)-g(x2),構(gòu)造新函數(shù),通過(guò)新函數(shù)的導(dǎo)數(shù)求解函數(shù)的最值.

解答 解:(1)∵f(x)=x+alnx,(x>0),
∴f′(x)=1+$\frac{a}{x}$=$\frac{x+a}{x}$
a≥0時(shí),f′(x)>0,函數(shù)在(0,+∞)遞增;
a<0時(shí),令f′(x)=0,解得:x=-a,
∴f(x)在(0,-a)遞減,在(-a,+∞)遞增;
(2)a=1時(shí):g(x)=x+lnx+$\frac{1}{2}$x2-bx,
 g′(x)=$\frac{1}{x}$+x-(b-1)=$\frac{{x}^{2}-(b-1)x+1}{x}$,
令g′(x)=0,得x2-(b-1)x+1=0,∴x1+x2=b-1,x1x2=1,
∵g(x1)-g(x2)=[lnx1+$\frac{1}{2}$${{x}_{1}}^{2}$-(b-1)x1]-[lnx2+$\frac{1}{2}$${{x}_{2}}^{2}$-(b-1)x2]
=ln $\frac{{x}_{1}}{{x}_{2}}$+$\frac{1}{2}$(${{x}_{1}}^{2}$-${{x}_{2}}^{2}$)-(b-1)(x1-x2)=ln$\frac{{x}_{1}}{{x}_{2}}$-$\frac{1}{2}$($\frac{{x}_{1}}{{x}_{2}}$-$\frac{{x}_{2}}{{x}_{1}}$),
∵0<x1<x2,所以設(shè)t=$\frac{{x}_{1}}{{x}_{2}}$(0<t<1),
h(t)=lnt-$\frac{1}{2}$(t-$\frac{1}{t}$)(0<t<1),
h′(t)=$\frac{1}{t}$-$\frac{1}{2}$(1+$\frac{1}{{t}^{2}}$)=-$\frac{{(t-1)}^{2}}{{2t}^{2}}$<0,
所以h(t)在(0,1)單調(diào)遞減,
又b≥$\frac{7}{2}$,∴(b-1)2≥$\frac{25}{4}$,
即(x1+x2)2=$\frac{{{(x}_{1}+{x}_{2})}^{2}}{{x}_{1}{•x}_{2}}$=t+$\frac{1}{t}$+2≥$\frac{25}{4}$,
∵0<t<1,∴4t2-17t+4≥0,∴0<t≤$\frac{1}{4}$,
∴h(t)≥h($\frac{1}{4}$)=$\frac{15}{8}$-2ln2,
故所求的最小值是$\frac{15}{8}$-2ln2.

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的極值的求法韋達(dá)定理以及構(gòu)造法的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力,轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.以(-2,1)為圓心且與直線x+y=3相切的圓的方程為(  )
A.(x-2)2+(y+1)2=2B.(x+2)2+(y-1)2=4C.(x-2)2+(y+1)2=8D.(x+2)2+(y-1)2=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}中,a1=1,an+1=an+$\frac{1}{n}$,則a4=$\frac{17}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在直角坐標(biāo)系xOy中,曲線M的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosα+sinα}\\{y=2\sqrt{3}sinαcosα-2si{n}^{2}α+2}\end{array}\right.(α為參數(shù))$,若以直角坐標(biāo)系中的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線N的極坐標(biāo)方程為ρsin($θ+\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(t為參數(shù)).
(1)求曲線M和直線N的直角坐標(biāo)方程;
(2)若直線N與曲線M有公共點(diǎn),求參數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0})}{△x}$,
b=$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$,
c=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+2△x)-f({x}_{0})}{△x}$,
d=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{2△x}$,
e=$\underset{lim}{x→{x}_{0}}$$\frac{f(x)-f({x}_{0})}{x-{x}_{0}}$,
則b,c,d,e中與a相等的是( 。
A.c,dB.d,eC.b,eD.c,e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.執(zhí)行如圖的程序框圖,若輸人a=319,b=87,則輸出的a是( 。
A.19B.29C.57D.76

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,給出了一個(gè)程序框圖,其作用是輸入x的值,輸出相應(yīng)的y的值.
(1)請(qǐng)指出該程序框圖所使用的邏輯結(jié)構(gòu);
(2)若要使輸入的x的值是輸出的y的值的一半,則輸入x的值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ex,g(x)=1nx+m.
(1)當(dāng)m=-1時(shí),求函數(shù)F(x)=$\frac{f(x)}{x}$+x•g(x)在(0,+∞)上的極值;
(2)若m=2,求證:當(dāng)x∈(0,+∞)時(shí),f(x)>g(x)+$\frac{1}{10}$.
(參考數(shù)據(jù):ln2=0.693,ln3=1.099)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.直線L圓x2+(y-2)2=2相切,且直線L在兩坐標(biāo)軸上的截距相等,則這樣的直線L的條數(shù)為( 。
A..1B.2C..3D..4

查看答案和解析>>

同步練習(xí)冊(cè)答案