分析 通過已知條件求出底面外接圓的半徑,確定球心為O的位置,求出球的半徑,然后求出球的體積.
解答 解:在△ABC中AB=AA1=2,AC=1,∠BAC=60°,
可得BC=$\sqrt{3}$,
可得△ABC外接圓半徑r=1,
三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,
三棱柱為直三棱柱,側(cè)面BAA1B1是正方形它的中心是球心O,
球的直徑為:BA1=2$\sqrt{2}$,球半徑R=$\sqrt{2}$,
故此球的表面積為$\frac{4}{3}$πR3=$\frac{8\sqrt{2}}{3}$π.
故答案為:$\frac{8\sqrt{2}}{3}$π.
點(diǎn)評(píng) 本題是中檔題,解題思路是:先求底面外接圓的半徑,轉(zhuǎn)化為直角三角形,求出球的半徑,這是三棱柱外接球的常用方法;本題考查空間想象能力,計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2 | B. | f(x)=-x3 | C. | f(x)=|x| | D. | f(x)=x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | |MA|+|MB|=2|MC| | B. | |MA|•|MB|=|MC|2 | C. | |MA|=|MB|•|MC| | D. | |MA|2=|MB|2+|MC|2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2$\sqrt{2}$,$\frac{11}{3}$) | B. | (2$\sqrt{2}$,$\frac{11}{3}$] | C. | (2$\sqrt{3}$,4) | D. | (2$\sqrt{3}$,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 75 | B. | 90 | C. | 105 | D. | 120 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com