17.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,各頂點(diǎn)都在同一球面上,若AB=AA1=2,AC=1,∠BAC=60°,則此球的體積等于$\frac{8\sqrt{2}}{3}$π.

分析 通過已知條件求出底面外接圓的半徑,確定球心為O的位置,求出球的半徑,然后求出球的體積.

解答 解:在△ABC中AB=AA1=2,AC=1,∠BAC=60°,
可得BC=$\sqrt{3}$,
可得△ABC外接圓半徑r=1,
三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,
三棱柱為直三棱柱,側(cè)面BAA1B1是正方形它的中心是球心O,
球的直徑為:BA1=2$\sqrt{2}$,球半徑R=$\sqrt{2}$,
故此球的表面積為$\frac{4}{3}$πR3=$\frac{8\sqrt{2}}{3}$π.
故答案為:$\frac{8\sqrt{2}}{3}$π.

點(diǎn)評(píng) 本題是中檔題,解題思路是:先求底面外接圓的半徑,轉(zhuǎn)化為直角三角形,求出球的半徑,這是三棱柱外接球的常用方法;本題考查空間想象能力,計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中,其圖象關(guān)于原點(diǎn)對(duì)稱的是(  )
A.f(x)=x2B.f(x)=-x3C.f(x)=|x|D.f(x)=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,a2+c2+ac=b2,D為AC上一點(diǎn),且AB⊥BD,若AB=CD,則$\frac{AD}{CD}$=$\root{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過點(diǎn)M(0,2)的直線l與拋物線y2=-4x交于A,B兩點(diǎn),與x軸交于點(diǎn)C,則有(  )
A.|MA|+|MB|=2|MC|B.|MA|•|MB|=|MC|2C.|MA|=|MB|•|MC|D.|MA|2=|MB|2+|MC|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(2,4),則這個(gè)函數(shù)的解析式是y=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知兩條直線l1:x-ay=0(a≠0),l2:x+y-3=0.
(1)若l1⊥l2,求a的值;
(2)在(1)的條件下,如果直線l3經(jīng)過l1與l2的交點(diǎn),且經(jīng)過點(diǎn)A(2,4),求直線l3的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2(x≥0)}\\{4xcosπx-1(x<0)}\end{array}\right.$,g(x)=kx-1(x∈R),若函數(shù)y=f(x)-g(x)在x∈[-2,3]內(nèi)有4個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(2$\sqrt{2}$,$\frac{11}{3}$)B.(2$\sqrt{2}$,$\frac{11}{3}$]C.(2$\sqrt{3}$,4)D.(2$\sqrt{3}$,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若z=1-$\sqrt{2}$i,則復(fù)數(shù)z+$\frac{1}{z}$在復(fù)平面上對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè){an}是公差為正數(shù)的等差數(shù)列,若a1+a3=10,且a1a3=16,則a11+a12+a13等于(  )
A.75B.90C.105D.120

查看答案和解析>>

同步練習(xí)冊(cè)答案