A. | |MA|+|MB|=2|MC| | B. | |MA|•|MB|=|MC|2 | C. | |MA|=|MB|•|MC| | D. | |MA|2=|MB|2+|MC|2 |
分析 可畫出圖形,設l的方程為y=kx+2,從而可聯(lián)立拋物線的方程消去x得到${y}^{2}+\frac{4}{k}•y-\frac{8}{k}=0$,可設A(x1,y1),B(x2,y2),根據(jù)韋達定理即可求出${x}_{1}{x}_{2}=\frac{4}{{k}^{2}}$,根據(jù)圖形可以得到$\frac{|MA|}{|MC|}=\frac{-{x}_{1}}{\frac{2}{k}},\frac{|MC|}{|MB|}=\frac{\frac{2}{k}}{-{x}_{2}}$,這樣便可得到$\frac{|MA|}{|MC|}=\frac{|MC|}{|MB|}$,從而找出正確選項.
解答 解:如圖,設直線l的方程為y=kx+2,∴$x=\frac{y-2}{k}$,代入拋物線方程并整理得:
${y}^{2}+\frac{4}{k}•y-\frac{8}{k}=0$;
設A(x1,y1),B(x2,y2),則${y}_{1}+{y}_{2}=-\frac{4}{k},{y}_{1}{y}_{2}=-\frac{8}{k}$;
∴${x}_{1}{x}_{2}=\frac{{y}_{1}-2}{k}•\frac{{y}_{2}-2}{k}$=$\frac{{y}_{1}{y}_{2}-2({y}_{1}+{y}_{2})+4}{{k}^{2}}=\frac{4}{{k}^{2}}$;
∵$C(-\frac{2}{k},0)$;
∴$\frac{|MA|}{|MC|}=\frac{-{x}_{1}}{\frac{2}{k}}=\frac{{x}_{1}{x}_{2}}{\frac{2}{k}•(-{x}_{2})}=\frac{\frac{4}{{k}^{2}}}{\frac{2}{k}•(-{x}_{2})}$,$\frac{|MC|}{|MB|}=\frac{\frac{2}{k}}{-{x}_{2}}=\frac{\frac{4}{{k}^{2}}}{(-{x}_{2})•\frac{2}{k}}$;
∴$\frac{|MA|}{|MC|}=\frac{|MC|}{|MB|}$;
∴|MA||MB|=|MC|2.
故選:B.
點評 考查直線的點斜式方程,橢圓的標準方程,韋達定理,以及相似三角形對應邊的比例關系.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | 11 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-sin2x | B. | y=sin(2x+$\frac{π}{4}$) | C. | y=-cos2x | D. | y=cos2x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4$\sqrt{6}$π | B. | 2$\sqrt{6}$π | C. | 16$\sqrt{3}$π | D. | 8$\sqrt{6}$π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com