A. | $\frac{2015}{2016}$ | B. | $\frac{2016}{2017}$ | C. | $\frac{4032}{2017}$ | D. | $\frac{4034}{2017}$ |
分析 利用累加法求出數(shù)列的通項公式,得到$\frac{1}{{a}_{n}}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$.再由裂項相消法求得答案.
解答 解:∵a1=1,
∴由an+1=a1+an+n,得
an+1-an=n+1,
則a2-a1=2,
a3-a2=3,
…
an-an-1=n(n≥2).
累加得:an=a1+2+3+…+n=$1+2+…+n=\frac{n(n+1)}{2}$(n≥2).
當n=1時,上式成立,
∴${a}_{n}=\frac{n(n+1)}{2}$.
則$\frac{1}{{a}_{n}}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$.
∴$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2016}}}}$=2$(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{2016}-\frac{1}{2017})$=$2(1-\frac{1}{2017})=\frac{4032}{2017}$.
故選:C.
點評 本題考查數(shù)列遞推式,考查了累加法求數(shù)列的通項公式,訓練了裂項相消法求數(shù)列的和,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $-\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | $-\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | -6 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=1,y=$\frac{x}{x}$ | B. | y=x,y=$\root{3}{{x}^{3}}$ | ||
C. | y=$\sqrt{x-1}$×$\sqrt{x+1}$,y=$\sqrt{{x}^{2}-1}$ | D. | y=|x|,$y={({\sqrt{x}})^2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com