A. | 1+2$\sqrt{2}$ | B. | 3+2$\sqrt{2}$ | C. | 3-2$\sqrt{2}$ | D. | 2$\sqrt{2}$-1 |
分析 由{bn}為等比數(shù)列可得(a22)2=b22=b1b3=(a3a1)2,從而可得a22=±a3a1,再討論求解即可.
解答 解:由題意可得,
(a22)2=b22=b1b3=(a3a1)2,
∴a22=±a3a1,
若a22=a3a1,則d=0,
故不成立;
若a22=-a3a1,
則($\frac{{a}_{1}+{a}_{3}}{2}$)2=-a3a1,
即${{a}_{1}}^{2}$+6a3a1+${{a}_{3}}^{2}$=0,
即($\frac{{a}_{3}}{{a}_{1}}$)2+6$\frac{{a}_{3}}{{a}_{1}}$+1=0,
故$\frac{{a}_{3}}{{a}_{1}}$=-3±2$\sqrt{2}$,
又∵q2=($\frac{{a}_{3}}{{a}_{1}}$)2,且q>1,
∴q=3+2$\sqrt{2}$,
故選B.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的性質(zhì)及方程思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$(3n-1) | B. | $\frac{1}{2}$(3n+1) | C. | 3n | D. | 3n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | $\frac{{3\sqrt{5}}}{2}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,1] | C. | [-2,0) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-2<x<2} | B. | {x|1≤x≤2} | C. | {x|-2<x≤1} | D. | {x|-2≤x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | $\frac{24}{5}$ | C. | $\frac{3}{16}$ | D. | $\frac{9}{16}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com